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Abstract

The use of fractional kinetic equations to describe the many phenomena regulated by anomalous reactions in dynami-
cal systems with chaotic motion is examined. Several authors have used a variety of methodologies to study a number
of difficulties arising from the generalised Bessel’s function. In this follow-up study, the results of Katugampola ki-
netic fractional equations containing the first kind of generalised Bessel’s function will be investigated. The result is
obtained using the τ Laplace transform technique. We may use the generality of this series to deduce solutions for a
fractional kinetic equation employing a different sort of Bessel’s series. A graphical representation of the behaviors
of the obtained solutions is also supplied.
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1. Introduction

To evaluate fractional-order differ-integral equations, fractional calculus is an effective mathematical tool. It
has been established and developed in engineering and scientific fields. Fractional differential equations and their
applications have made significant contributions to applied science, physics, biology, chemistry and engineering (see,
e.g. [2, 7, 23] ). Kinetic equations define a system of differential equations in form of reaction rates for destruction
and production respectively, which examine the rate of change of a star’s chemical combination for each order. The
extension and generalization of kinetic fractional equations which involve many fractional operators was found in
the value of fractional differential equations has grown more interest in applied science not only in mathematics but
also in physics, dynamical systems, control systems and engineering in order to create many physical phenomena as
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a mathematical model. Over the last decades, kinetic fractional equations in many forms have been widely used in
describing and solving a variety of important astrophysics and physics (see, e.g. [1, 3, 9, 10, 11, 12, 13, 14, 15, 17,
18, 24, 25, 26]) problems. The special functions with their applications (such as Bessel’s function, Hypergeometric
function, Legender function, and many others) used in the solutions of fractional differential equations. They are
related to every problem in a wide range of mathematical physics and mathematical fields, because kinetic fractional
equations are effective and relevant in astrophysical calculations. Thoughts have prompted a number of researchers
in the area of special functions to investigate applications and applications the possible extensions of the Bessel’s
functions. These functions are also helpful for problem solving in wave mechanics and elastic theory. Bessel’s
functions are an endless subject; there are much more useful properties than one is aware of.
In this paper we used the τ Laplace transform technique while other researcher used different transform techniques
and already existing results are special cases of these results that is the current research work is simply generalization.

Haubold and Mathai [16] investigated the kinetic equation that describes the rate of change.

dN
dt
= −d(Nt) + q(Nt). (1)

Where q = q(N) denote the production rate, d = d(N)is the destruction rate, N = N(t) indicate the reaction rate and Nt

represent the function defined by Nt(t∗) = N(t − t∗), t∗ > 0. When they obtained some appropriate cases of equation
(1), when spatial variations or inhomogeneities in the quantity N(t) are neglected, is given by the equation

dN
dt
= −ciNi(t), (2)

with conditions Ni(t = 0) = N0 expressing the variety of species density i at time t = 0 and ci > 0. Ignoring index i
and integrating, equation (2) becomes

N(t) − N0 = c 0Dt
−1N(t), (3)

where 0Dt
−1 is the prominent case of the Riemann-Liouville integral operator 0Dt

−n defined as

0Dt
−n
f(t) =

1
Γ(n)

∫ t

0
(−u + t)n−1

f(u)du, t > 0,ℜ(n) > 0. (4)

The fractional generalization was developed by Haubold and Mathai [16], of the classical kinetic equation (3) as

N(t) − N0 = −cn
0Dt
−nN(t), (n, c ∈ ℜ+), (5)

have yield the solution of (5) as follows:

N(t) = N0

∞∑
r=0

(−1)r

Γ(rn + 1)
(ct)rn. (6)

Equation (6) also can be rewrite in form of the Mittag-Leffler function in a combine form as

N(t) = N0En(−cntn), n > 0. (7)

Where En(z) is the Mittag-Leffler function, which is defined [22] as

En(z) =
∞∑

r=0

zr

Γ(nr + 1)
, (n > 0). (8)

The generalize form of Mittag-Leffler function [22] is given as

En,β(z) =
∞∑

r=0

zr

Γ(nr + β)
, (n > 0, β > 0). (9)
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Furthermore, Saxena and Kalla [27] considered the kinetic fractional equation as:

N(t) − N0f(t) = −cn
0Dt
−nN(t), (n, c ∈ ℜ+). (10)

Where f ∈ L(0,∞) and N(t) represent the number density of a given species at time t and N0 = N(0) is the number
density of that species at time t = 0, when we apply Laplace transform to equation(7), we obtain

L{N(t)}(p) = N0
F(s)

1 + cns−n = N0F(s)

 ∞∑
k=0

(−cn)ks−kn

 (
k ∈ N0, |

c
d
| < 1

)
. (11)

For time variable t > 0, f(t) denote a complex valued function and s is complex or real parameter.
The Laplace transform of the function f(t) is given by

L{f(t); s} = F(s) =
∫ ∞

0
exp(−st)f(t)dt, (R(s) > 0).

Many researchers explored solutions of equation (5) in terms of the different special functions (see, e.g., [3, 5, 6, 8, 9,
10, 11, 12, 20]) in generalized forms. Here, we recall a solution of a generalized kinetic fractional equation containing
generalized Bessel’s function [4] given by Dinesh et al. (see [21])

Wp,b,c(x) =Wp(x) =
∞∑

r=0

(−1)r(c)r

r!Γ(r + p + (b + 1)/2)

( x
2

)(2r+p)
, (12)

where x ∈ C\{0} such that C denote the set of complex number and b, c, p ∈ C,ℜ(p) > −1 and Γ(d) is known Gamma
function.
Equation (12) reduces many kinds of special cases with different conditions, which can be obtained as follows

(i) If we enter b = c = 1 in (12), then we get the well-known first kind Bessel’s function [28] of order p for x, p ∈ C
withℜ(p) > 0. which is defined and represented by the following expressions (see also [4]).

.

Jp(x) =
∞∑

r=0

(−1)r

r!Γ(r + p + 1)

( x
2

)(2r+p)
, (13)

(ii) By inserting b = 1 and c = −1 in equation (12), we yield the first kind modified Bessel’s function of order p given
by (see[4, 28] ) then the expression is also convert into a known form of Galué generalized modified Bessel’s function
[14].
(iii)Substituting b = 2 and c = 1 in equation (12), we obtain the first kind spherical Bessel’s function of order p
defined by (see [4]).
In this paper, we use the τ-Laplace transform to solve the Katugampola kinetic fractional equation [1, 17], which
involves generalized Bessel’s function of the first kind.
Here we involve some basic definitions as follows:

2. Preliminaries

Definition 2.1. The Katugampola fractional operator is a generalization of the Riemann- Liouville integral operator
into a unique form, which was given by U. N. Katugampola [19] such as for n ∈ C then

[τIna+f] (x) =
τ(1−n)

Γ(n)

∫ x

a

u(τ−1)f(u)
(xτ − uτ)(1−n) du, (ℜ(n) > 0, τ > 0). (14)

This integral is called the left-sided fractional integral. Similarly, the right-sided fractional integral of order n ∈ C is[
τInb−f

]
(x) =

τ(1−n)

Γ(n)

∫ b

x

u(τ−1)f(u)
(uτ − xτ)(1−n) du, (ℜ(n) > 0, τ > 0). (15)



E. Mittal, D. Sharma, S.Dutt Purohit, Results in Nonlinear Anal. 5 (2022), 325–336. 328

Definition 2.2. Let f : [0,∞) → ℜ be a real valued function , if f is piecewise continuous function and is of τ-
exponential order exp

(
c tτ
τ

)
where c is a non negative constant, then its τ-Laplace transform exists for s > c and is

defined as

Lτ{f(t); s} =
∫ ∞

0
exp

(
c

tτ

τ

)
f(t)

t(1−τ) dt, (τ > 0). (16)

Convolution of the functions f(t) and g(t), which are expressed for t > 0, is important in a variety of physical applica-
tions. The τ-Laplace convolution of functions f(t) and g(t) is given by the following integral:

{f(t) ∗τ g(t)} =
∫ ∞

0
f{(tτ − ρτ)

1
τ }g(ρ)

dρ
ρ(1−τ) , (τ > 0). (17)

Which remains exists if the functions f and g are at least piecewise continuous. One of the most important properties
procured by the convolution in connection with the τ- Laplace transform is that the τ-Laplace transform of the con-
volution of two functions is the product of their transforms (see, e.g.[1, 17]).

τ-Laplace Convolution Theorem If two function f and g are piecewise continuous on the interval [0,∞) and of
exponential order c when t → ∞, then

L{f(t) ∗τ g(t); s} = L{f(t); s}.L{g(t); s}, (R(s) > 0).

We find the τ-Laplace transform of Katugampola Fractional integral is

Lτ{
τIn0f(t); s} =

τ1−n

Γ(n)
Lτ{tτ(n−1) ∗τ f(t); s}

=
τ1−n

Γ(n)
Lτ{tτ(n−1); s}.Lτ{f(t); s}

= s−nLτf(t), (18)

by using the identity

Lτ{tr; s} = τ
r
τ

Γ
(
1 + r

τ

)
s(1+ r

τ )
, (r ∈ R, s > 0) (19)

⇐⇒ L−1
τ

(
1

s1+ r
τ

)
=

1

τ
r
τΓ

(
1 + r

τ

) tr, (20)

in which L−1
τ considered as the τ-inverse Laplace transform.

3. Main Results

3.1. Solution of Katugampola kinetic fractional equations
In this section, we achieve the solution of the Katugampola kinetic fractional equation involving the generalized

Bessel function of the first kind by applying the τ-Laplace transform technique.

Theorem 3.1. For all c, b, l, t ∈ C, d, n > 0 andℜ(l) > −1 then equation

N(t) − N0Wl,b,c(t) = −dn τIn0N(t), (21)

there holds the formula

N(t) = N0

∞∑
r=0

(−c)rΓ
(
1 + 2r+l

τ

)
r!Γ

(
l + r + b+1

2

) ( t
2

)(2r+l)
× En, (τ+2r+l)

τ

(
−dntnτ

τn

)
(22)

whereWl,b,c is the generalised Bessel’s function and En, (τ+2r+l)
τ

is the generalised Mittag-Leffler function.
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Proof. Applying τ-Laplace transform both side of equation (21), we have

Lτ{N(t); s} = N0Lτ{Wl,b,c(t); s} − dnLτ{
τIn0N(t); s},

Nτ(s) = N0

∞∑
r=0

(−1)r(c)r

r!Γ(r + l + (b + 1)/2)

(
1
2

)(2r+l)

Lτ{t(2r+l); s} − dns−nNτ(s), (23)

using equation (19) in equation(23), we get

Nτ(s) + dns−nNτ(s) = N0

∞∑
r=0

(−1)r(c)r

r!Γ(r + l + (b + 1)/2)

(
1
2

)(2r+l) Γ(1 + (2r+l)
τ )

s
(2r+l+τ)
τ

× τ
(2r+l)
τ ,

Nτ(s) =
1

(1 + dns−n)
N0

∞∑
r=0

(−1)r(c)r

r!Γ(r + l + (b + 1)/2)

(
1
2

)(2r+l)

×
Γ(1 + (2r+l)

τ )

s
(2r+l+τ)
τ

τ
(2r+l)
τ ,

= N0

∞∑
r=0

(−1)r(c)r

r!Γ(r + l + (b + 1)/2)

(
1
2

)(2r+l) Γ(1 + (2r+l)
τ )

s
(2r+l+τ)
τ

,

× τ
(2r+l)
τ

∞∑
k=0

(−1)k
( s
d

)−kn
. (24)

After, some simplifications in equation (24),we may write

Nτ(s) = N0

∞∑
r,k=0

(−1)r+k(c)r(d)kn 2−(2r+l)Γ(1 + (2r+l)
τ ) τ

2r+l
τ

r! Γ(r + l + (b + 1)/2)
1

s(1+ 2r+l+knτ
τ )
. (25)

Taking τ-inverse Laplace transform both side of equation (25)and using equation (20) in it, we have

Nτ(t) = N0

∞∑
r,k=0

(−1)r+k(c)r(d)kn 2−(2r+l)Γ(1 + (2r+l)
τ ) τ

2r+l
τ

r! Γ(r + l + (b + 1)/2)

×
t(2r+l+knτ)

τ
2r+l
τ +nkΓ

(
1 + (2r+l+knτ)

τ

) ,
= N0

∞∑
r=0

(−1)r(c)rΓ(1 + (2r+l)
τ )

r! Γ(r + l + (b + 1)/2)

( t
2

)(2r+l) ∞∑
k=0

(
(−1)kdntnτ

τn

)k

×
1

Γ
(

(2r+l+τ)
τ + kn

) ,
= N0

∞∑
r=0

(−1)r(c)rΓ(1 + (2r+l)
τ )

r! Γ(r + l + (b + 1)/2)

( t
2

)(2r+l)
En, τ+2r+l

τ

(
−dntnτ

τn

)
. (26)

□

This is a proposition This is an example.

Corollary 3.2. If d > 0, n, τ > 0, l ∈ C andℜ(l) > −1 then, the solution of the equation

N(t) − N0Jl(t) = −dn τIn0N(t), (27)
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there holds the formula

N(t) = N0

∞∑
r=0

(−1)rΓ
(
1 + 2r+l

τ

)
r!Γ (l + r + 1)

( t
2

)(2r+l)
× En, (τ+2r+l)

τ

(
−dntnτ

τn

)
(28)

where Jl is Bessel’s function of first kind and En, (τ+2r+l)
τ

is the generalized Mittag-Leffler function.

Corollary 3.3. If d > 0, n, τ > 0, l ∈ C andℜ(l) > −1 then, the solution of the equation

N(t) − N0Il(t) = −dn τIn0N(t), (29)

there holds the formula

N(t) = N0

∞∑
r=0

Γ
(
1 + 2r+l

τ

)
r!Γ (l + r + 1)

( t
2

)(2r+l)
× En, (τ+2r+l)

τ

(
−dntnτ

τn

)
(30)

where Il is modified Bessel’s function of first kind and En, (τ+2r+l)
τ

is the generalized Mittag-Leffler function.

Theorem 3.4. If d > 0, n, τ > 0, c, b, l, ∈ C andℜ(l) > −1 then, the solution of the equation

N(t) − N0Wl,b,c(dntn) = −dn τIn0N(t), (31)

there holds the formula

N(t) = N0

∞∑
r=0

(−c)rΓ
(
1 + n(2r+l)

τ

)
r!Γ

(
l + r + b+1

2

) (
dntn

2

)(2r+l)

× En, (τ+n(2r+l))
τ

(
−dntnτ

τn

)
(32)

Proof. Applying τ-Laplace transform both side of equation (31), we have

Lτ{N(t); s} = N0Lτ{Wl,b,c(dntn); s} − dnLτ{
τIn0N(t); s},

Nτ(s) = N0

∞∑
r=0

(−c)r

r!Γ(r + l + (b + 1)/2)

(
dn

2

)(2r+l)

Lτ{tn(2r+l); s} − dns−nNτ(s), (33)

using equation (19) in equation (33), we obtain

Nτ(s) + dns−nNτ(s) = N0

∞∑
r=0

(−c)r

r!Γ(r + l + (b + 1)/2)

(
dn

2

)(2r+l)

×
Γ(1 + n(2r+l)

τ )

s
(
1+ n(2r+l)

τ

) τ n(2r+l)
τ ,

Nτ(s) =
1

(1 + dns−n)
N0

∞∑
r=0

(−c)r

r!Γ(r + l + (b + 1)/2)

(
dn

2

)(2r+l)

×
Γ(1 + n(2r+l)

τ )

s
(
1+ n(2r+l)

τ

) τ n(2r+l)
τ ,

= N0

∞∑
r=0

(−c)r

r!Γ(r + l + (b + 1)/2)

(
dn

2

)(2r+l) Γ(1 + n(2r+l)
τ )

s
(
1+ n(2r+l)

τ

)
× τ

n(2r+l)
τ

∞∑
k=0

(−1)k
( s
d

)−kn
. (34)
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After, some simplifications in equation (34),we may write

Nτ(s) = N0

∞∑
r,k=0

(−1)r+k(c)r(d)n(k+2r+l) 2−(2r+l)Γ(1 + n(2r+l)
τ ) τ

n(2r+l)
τ

r! Γ(r + l + (b + 1)/2)

×
1

s(1+ n(2r+l+kτ)
τ )
. (35)

Taking τ-inverse Laplace transform both side of equation (35) and using equation (20) in it, we have

Nτ(t) = N0

∞∑
r,k=0

(−1)r+k(c)r(d)n(k+2r+l) 2−(2r+l)Γ(1 + n(2r+l)
τ ) τ

n(2r+l)
τ

r! Γ(r + l + (b + 1)/2)

×
tn(2r+l+kτ)

τ
n(2r+l+kτ)

τ Γ
(
1 + n(2r+l+kτ)

τ

) ,
= N0

∞∑
r=0

(−c)rΓ(1 + n(2r+l)
τ )

r! Γ(r + l + (b + 1)/2)

(
dntn

2

)(2r+l) ∞∑
k=0

(
(−1)kdntnτ

τn

)k

×
1

Γ
(

n(2r+l)+τ
τ + kn

) ,
= N0

∞∑
r=0

(−c)rΓ(1 + n(2r+l)
τ )

r! Γ(r + l + (b + 1)/2)

(
dntn

2

)(2r+l)

En, τ+n(2r+l)
τ

(
−dntnτ

τn

)
. (36)

□

Corollary 3.5. If d > 0, n, τ > 0, l ∈ C andℜ(l) > −1 then, the solution of the equation

N(t) − N0Jl(dntn) = −dn τIn0N(t), (37)

there holds the formula

N(t) = N0

∞∑
r=0

(−1)rΓ
(
1 + 2r+l

τ

)
r!Γ (l + r + 1)

(
dntn

2

)(2r+l)

× En, (τ+2r+l)
τ

(
−dntnτ

τn

)
(38)

where Jl is Bessel’s function of the first kind and En, (τ+2r+l)
τ

is the generalized Mittag-Leffler function.

Corollary 3.6. If d > 0, n, τ > 0, l ∈ C andℜ(l) > −1 then, the solution of the equation

N(t) − N0Il(dntn) = −dn τIn0N(t), (39)

there holds the formula

N(t) = N0

∞∑
r=0

Γ
(
1 + 2r+l

τ

)
r!Γ (l + r + 1)

(
dntn

2

)(2r+l)

× En, (τ+2r+l)
τ

(
−dntnτ

τn

)
(40)

where Il is modified Bessel’s function of first kind and En, (τ+2r+l)
τ

is the generalized Mittag-Leffler function.

Theorem 3.7. If a, d > 0, n, τ > 0, c, b, l, ∈ C andℜ(l) > −1 then, the solution of the equation

N(t) − N0Wl,b,c(dntn) = −an τIn0N(t), (41)

there holds the formula

N(t) = N0

∞∑
r=0

(−c)rΓ
(
1 + n(2r+l)

τ

)
r!Γ

(
l + r + b+1

2

) (
dntn

2

)(2r+l)

× En, (τ+n(2r+l))
τ

(
−antnτ

τn

)
(42)

Proof. This result can be verified by the similar procedure given in the proof of Theorem 1. So we omit all details. □
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3.2. Graphical representations

Figures 1–6 describe the graphical form of the equation (22) by using some fractional values of n, and we can see
that if we use small values of n, the graph increases and then decreases in nature. Aside from that, if we choose larger
values for n, it gradually decreases. The graphical results show that the region of convergence of solutions depends on
the fractional parameter n in a continuous manner. As a result, by watching the behavior of the solutions for different
parameters and time intervals, it is deduced that N(t) can be both negative and positive. A similar observation can be
made for solutions (32) and (42).

Figure 1: Curve between t and N(t) with different value of n
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Figure 2: Curve between t and N(t) with different value of n

Figure 3: Curve between t and N(t) with different value of n
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Figure 4: Curve between t and N(t) with different value of n

Figure 5: Curve between t and N(t) with different value of n
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Figure 6: Curve between t and N(t) with different value of n
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