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Abstract

In this work, we propose a nonlinear mathematics e�ect model of media on the phenomenon of corruption.
We suggest a model that is more general than the ones we are familiar with in this domain, as we work in
a structure of nine compartments. This model is important because it explains how corruption spreads in
society. Moreover, we have proved the existence and the uniqueness of the solution through the �xed point
theorem. The equilibria of the model are determined, and their stability is thoroughly studied. We argue
that the corruption-free equilibrium is stable when R0 is less than one. The endemic equilibrium, which
indicates the presence of corruption in the community, exists only when R0 > 1. Based on the principle
of Pontryagin's maximum, an assessment of the requirements for optimal control of corruption spread. We
perform extensive numerical simulations to support the analytical results.
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1. Introduction

Many people treat corruption as a routine habit. Corruption can be de�ned as an aggregate of improper
and dishonest acts by those in positions of power such as executives and government o�cials to increase their
pro�ts. The examples of corruption above include giving and accepting bribes and improper gifts, illegal
government a�airs, fraud or deception, forgery, money transfer, cheating, and money laundering. No country
is free of corruption although the level of its acceptance varies considerably from one country to another.
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Corruption is deeply ingrained in society, even to the point that certain countries view it as a social norm.
Most countries now have anti-corruption regulations. The often exhausted use of the expression "corruption"
helps to stigmatize corruption itself [24]. The money that was supposed to support the minimum level of
poverty in developing countries a�ected by the feds of all kinds was transferred to the bene�t of a speci�c
group of people who are considered as the corrupting group. The Robert dictionary de�nes corruption as an
alteration of judgment, taste, language, etc., and as a fact of moral corruption, debasement and perversion.
The �ght against corruption at the national and international levels remains an issue of great importance
with corruption intolerance increasing worldwide. Thus, mathematical modeling applies mathematical prin-
ciples, namely equations, formulas as well as �gures to show what is real. So, mathematical models are
relevant because they explain the mathematical core of a particular form
without the need to go into external details. The role of models is to focus on some aspects of the problem
with other dimensions being abstracted. Mathematical models are thus relevant because they illustrate the
mathematical core of a given context without extraneous information [14].
The relationship between elements of the immune system and cancer is examined and adjusted mathemati-
cally by Özdemir and Uçar [1] through the use of the Atangana-Baleanu derivative. The fractional immune
system-cancer model's existence and uniqueness are investigated, and numerical simulations are provided
using a predictor-corrector technique. While the objective of [2] is to study in depth a model of smoking
that is in�uenced mainly by willpower and educational initiatives through the CF and AB variants. The
�xed point approach gets used to prove the existence and uniqueness results for both fractional order mod-
els. The objective of [3] is in the �rst to use Atangana-Baleanu (AB) derivative in conjunction with the
fractional SAIDR model, which is reliant on the SAIDR model. The e�ect of quarantine and isolation in
COVID-19 is analyzed in detail by Hamou et al.[9]. The authors of [4] study an e-cigarette smoking model
using the Atangana-Baleanu fractional derivative to analyze the phenomenon of smoking. Evirgen et Al. [5]
investigated a comprehensive treatment of the newly de�ned Atangana-Baleanu (AB) fractional derivative
in an HIV infection model of CD4 + T cells. Uçar [6] take into account a computer virus spreading model
that utilizes an Atangana-Baleanu derivative in the sense of Caputo with nonlocal and nonsingular kernels.
Uçar and Özdemir [7] discussed the �rst-ever mathematical model that is presented and looks at how the
immune system and cancer cells interact when IL-12 cytokine and an anti-PD-L1 inhibitor are added. Uçar
[8] employed the recently implemented Atangana-Baleanu fractional derivative with the Mittag-Le�er kernel
to closely study the fundamental SEIRA (susceptible-exposed-infectious-removed-antidotal) model related
to computer worms. Hamou et Al. [10] evaluated the e�ect of multi-order property in fractional derivatives
to predict COVID-19. Hamou et Al. [11] reviewed a co-infection model of Hantavirus disease in Belgium.

In the context of the corruption issue and in the planning of intervention programs that aim to control
and minimize corruption, mathematical models with optimal control analysis are an ideal step. Corruption
has been the subject of relatively few scienti�c publications as far as our awareness. In [13], Alemneh
proposed a nonlinear model of corruption. The basic reproduction number R0, the point of equilibrium
with zero corruption, and the corruption-endemic equilibrium point are all determined. The local and
global asymptotic dynamic conditions of the uncorrupted and the endemic equilibrium are committed. The
conditions needed for the optimal control of the transmission of corruption are derived using Pontryagin's
maximal principle [40, 37]. Abdulrahman [12] developed a model of human behavior in a deterministic
corrupt population. They determined the corruption reproduction ratio R0, the uncorrupted equilibrium
point, and the endemic equilibrium point. They concluded that it is di�cult to eliminate corruption, but it
can be reduced to a level where it can be controlled. In [20], a SIR model for the dynamics of corruption
was created by the authors. As a result, they found the number of R0 and the equilibrium points both
corruption-free and endemic, additionally, the model was expanded to enable optimal control utilizing a
single optimal control strategy. In [33] Lemecha and Feyissa taking into account the awareness created by
anti-corruption and prison counseling as well as the awareness that results from the �ght against corruption,
Lemecha presented a model to examine the problem of corruption in which they mentioned the need to
provide the corrupted individuals in the prison. The authors of [35] propose a novel mathematical model
for the dynamics of moral corruption that includes extensive age-appropriate sexual knowledge and therapy
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and guidance. Yusuf et Al. [30] have proposed and developed a mathematical model of corruption with
a constant recruitment rate, the number of reproduction R0 is obtained, numerical simulations have been
conducted and found that corruption can only be minimized if at least 40% of the corrupt are attacked and
denounced by social media accounts.
In this essay, we construct a new mathematical model. We demonstrate the existence and uniqueness of the
solutions and then determine the stability associated with the equilibrium point where corruption is absent
and the equilibrium point where corruption is persistent. Furthermore, the corruption reproduction number
R0 for the model is computed, and the sensitivity analysis of the model parameters is also studied. We prove
the importance of media, sanctions, and publicity in raising awareness through an optimal control model,
and the e�cacy of our numerical results is presented with the support of �gures.

2. Basic preliminaries

The �owing de�nitions and theorems are used in the next sections of the paper, the existence will be
proved using �xed point theorem. The stability of model equilibrium point will be discussed using the �owing
theorems

Theorem 2.1 ([44]). If x0 is an equilibrium point for the di�erential equation ẋ = f(x) and if all eigenvalues

of the linear transformation Df (x0) (Jacobean matrix) have negative real parts, then x0 is asymptotically

stable.

The above Theorem is used only to prove the local dynamic of the equilibrium point. For the global
dynamics we will use the Lyaponov function.

De�nition 1 ([44]). A continuous function V : U → R, where U ⊆ Rn is an open set with x0 ∈ U , is called
a Lyapunov function for the di�erential equation at x0 provided that

(i) V (x0) = 0,

(ii) V (x) > 0 for x ∈ U − {x0},

(iii) the function x 7→ gradV (x) is continuous for x ∈ U−{x0}, and, on this set, V̇ (x) := gradV (x) ·f(x) ≤
0.

If, in addition, (iv) V̇ (x) < 0 for x ∈ U − {x0}, then V is called a strict Lyapunov function.

Theorem 2.2 (Lyapunov's Stability Theorem [44]). If x0 is a rest point for the di�erential equation (1.15)

and V is a Lyapunov function for the system at x0, then x0 is stable. If, in addition, V is a strict Lyapunov

function, then x0 is asymptotically stable.

3. Description of the model

In this model, the whole population N is distributed into nine categories of susceptible individuals who
are not exposed to social media SN , sensitive individuals who are in contact with the world of social media
SE corrupt individuals C, imprisoned individuals J , those who are exposed to a corrupt person but do
not execute him are exposed individuals EC , ENC individuals who are not exposed to a corrupt person,
semi-recovered individuals Rs (this population cannot be 100% honest), recovered individuals R, and honest
individuals H.
Imagine that there is a positive recruitment Π in the susceptible category by the birth, immigration, or
implantation of seeds, where, Γ is the proportion of sensitives who are not yet exposed to social media, φ
is the rate at which susceptible individuals that are not exposed to social media become exposed to social
media. Sensitive individuals SN shall have a rate of contact with individuals ENC at a rate β, The rate of
social media use is de�ned by f . Individuals in social classes SN , SE , C or J become honest due to public
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Figure 1: Diagram of the corruption transmission model.

awareness of the danger of corruption on the economy at a rate θ, individuals in EC then interact with
individuals in C and become infected at the rate of δ, ϵ is the proportion of individuals who join R or Rs

from C, ϕ is the rate at which people who are corrupt are put in jail σ is the proportion of individuals who join
the recovered sub-population from the corrupted population, Λ is the rate at which imprisoned individuals
are semi-recovered is the rate at which imprisoned individuals are semi-recovered, η is the proportion of
individuals who join R or Rs from J , ks is the proportion of individuals who join SE from Rs, rs is the rate
at which semi-recovered individuals are honest, kR is the proportion of individuals who join H from R and
rR is the rate at which recovered individuals are honest, γ is the rate at which the jailed individuals become
susceptible (SN ) to corruption, ω is the decreasing embarrassment rate, eNC is the rate at which ENC

individuals are recovered, and become corrupted at the rate of α = p(1 − e), where p is the probability of
becoming corrupt when a susceptible individual interact with corrupt individuals, e is the e�ort rate against
corruption.
To always study a mathematical model of a phenomenon, in reality, it is necessary to invoke this relationship
by adopting a set of conditions and we list them in the following as indicated in [41]

� People who are expected to be corrupt have the same probability of being corrupt.

� The corrupt individual forces susceptible individuals to engage in corruption when they interact.

� Due to biological signi�cance, the model's parameters are non-negative.

� After being recovered after some time, individuals can become either sensitive or corrupt.

� Corruption's spread in society is similar to the growth of an epidemic disease.

� The rate of recruitment of a new individual into the susceptible and corrupt classes is through birth
and immigration.

We used a graph where the vertices are the classes of individuals, and the stops represent the links between
the compartments, we assumed that there is a positive recruitment Π. From this class, a subpopulation will
join the subpopulation of honest individuals H at rate θ. The individual SN will have a β contact rate with
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ENC . Of these individuals, (1 − β) moved at an (α) rate to the corrupt compartment, and the rest of the
population will move to SE at the rate φ.
For more details on other classes, see the compartmental diagram in Figure 2, which represents the model
of the corruption, and all of the parameter descriptions provided in Table 1.

Therefore, the model can be expressed as an ordinary system of di�erential equations as shown below:

dSN
dt

= ΓΠ+ γ(1− θ)J − (φ+ β + µ+ θ)SN − α(1− β)SNC,

dSE
dt

= (1− Γ)Π + φSN + rs(1− ks)Rs − (1− f)αSEC − (θ + µ)SE ,

dEC

dt
= (1− f)αSEC − (δ + µ)EC ,

dENC

dt
= βSN − (eNC + µ)ENC ,

dC

dt
= (1− β)αSNC + αδEC − (ϵ+ ϕ+ µ)C,

dJ

dt
= ϕC − (γη + γ(1− θ) + µ)J,

dRs

dt
= γηΛJ + ϵ(1− σ)C − (rs + µ)Rs,

dR

dt
= (1− α)δEC + γη(1− Λ)J + eNCENC + ϵσC − (rRkR + µ)R,

dH

dt
= rRkRR+ θ(SN + SE)− µH.

(1)

with the initial condition
SN (0) = SN,0 ≥ 0, SE(0) = SE,0 ≥ 0, EC(0) = EC,0 ≥ 0, ENC(0) = ENC,0 ≥ 0,

C(0) = C0 ≥ 0, J(0) = J0 ≥ 0, Rs(0) = Rs,0 ≥ 0, R(0) = R0 ≥ 0, etH(0) = H0 ≥ 0
Justifying the fact of adding the third, fourth, seventh, and eighth equations in (1). The third equation

re�ects the situation of individuals who are in contact with corrupt individuals, so there is a probability
that they will be corrupted. The fourth equation re�ects the situation of individuals who are likely to be
corrupt but have not had the opportunity to do so. The seventh and eighth express, in order, a class of
semi-recoverable individuals, that is depending on the social environment, they cannot be honest, on the
contrary, the individuals of class R can be recoverable with a probability, that is to say, become honest.

4. Qualitative analysis of the model

Let N the total population, then

N = SN + SE + EC + ENC + C + J +Rs +R+H.

We have

dN

dt
= Π− µ(SN (t) + SE(t) + EC(t) + ENC(t) + C(t) + J(t) +Rs(t) +R(t) +H(t)) = Π− µN(t),

then ∫
dN

dt
=

∫
(Π− µN(t))dt.

So N(t) = N(0) exp(−
∫ t
0 µds) +

∫ t
0 Πexp(−

∫ t
s µdϑ),

if N(0) ≤ Π
µ ,
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thus N(t) ≤ Π
µ exp(−

∫ t
0 µds) +

∫ t
0 Πexp(−µ(t− s)ds) ≤ Π

µ exp(−
∫ t
0 µds) +

Π
µ ,

when t→ +∞, N(t) ≤ Π
µ

The feasible region for the model (1) is given by

Ω =
{
(SN , SE , EC , ENC , C, J,Rs, R,H) ∈ R9

+; SN , SE , EC , ENC , C, J,Rs, R,H ≥ 0, N ≤ Π
µ

}
.

Clearly, Ω is positively invariant with the system presented by equation (2), in which the model is identi-
�ed as epidemiologically meaningful and well-posed mathematically. The diagram of the model compartments
with parameters are presented in Figure 2.

4.1. Existence and uniqueness of the system solutions

The existence of the solution system is demonstrated by applying the �xed point theorem.
Consider H = (C(J))9, and C(J ) be a Banach �eld of continuous functions on the interval J ⊂ R → R with
the norm

∥(SN (t), SE(t), EC(t), ENC(t), C(t), J(t), Rs(t), R(t), H(t))∥
= ∥SN∥∞ + ∥SE∥∞ + ∥EC∥∞ + ∥ENC∥∞ + ∥C∥∞ + ∥J∥∞ + ∥Rs∥∞ + ∥R∥∞ + ∥H∥∞,

where ∥.∥∞ indicates the supremum norm in C(J).
For simplicity, we consider

Θ1(t, SN ) = ΓΠ + γ(1− θ)J − (φ+ β + µ+ θ)SN − α(1− β)SNC,

Θ2(t, SE) = (1− Γ)Π + φSN + rs(1− ks)Rs − (1− f)βSEC − (θ + µ)SE ,

Θ3(t, EC) = (1− f)βSEC − (δ + µ)EC ,

Θ4(t, ENC) = βSN − (eNC + µ)ENC ,

Θ5(t, C) = (1− β)αSNC + αδEC − (ϵ+ ϕ+ µ)C,

Θ6(t, J) = ϕC − (γη + γ(1− θ) + µ)J,

Θ7(t, Rs) = γηΛJ + ϵ(1− σ)C − (rs + µ)Rs,

Θ8(t, R) = (1− α)δEC + γη(1− Λ)J + eNCENC + ϵσC − (rRkR + µ)R,

Θ9(t,H) = rRkRR+ θ(SN + SE)− µH.

For proving the existence Theorem, we shall assume that
∥SN∥ ≤ c1, ∥SE∥ ≤ c2, ∥EC∥ ≤ c3, ∥ENC∥ ≤ c4, ∥C∥ ≤ c5, ∥J∥ ≤ c6, ∥Rs∥ ≤ c7, ∥R∥ ≤ c8, ∥H∥ ≤ c9 where
ci, i = 1, ..., 9 are positive constants. Thus, we note

κ1 = (φ+ β + µ+ θ) + α(1− β)c4,

κ2 = (1− f)βc5 − (θ + µ),

κ3 = (δ + µ),

κ4 = (eNC + µ),

κ5 = (1− β)αc2 + αδc3 − (ϵ+ ϕ+ µ),

κ6 = (γη + γ(1− θ) + µ),

κ7 = (rs + µ),

κ8 = (rRkR + µ),

κ9 = µ.

Theorem 4.1. The kernels, Θi=1,...9 are valid for the Lipschitz condition and the contraction if the presented

inequality holds

0 ≤ κi < 1, for i = 1, ...., 9.
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Proof. Let SN1 and SN2 be two functions, then

∥Θ1(t, SN1)−Θ1(t, SN2)∥ =∥ − ((φ+ β + µ+ θ)− α(1− β)C)(SN1 − SN2)∥,
≤ [(φ+ β + µ+ θ) + α(1− β)∥C∥∥SN1(t)− SN2(t)∥,
≤ [(φ+ β + µ+ θ) + α(1− β)c4]∥SN1(t)− SN2(t)∥.

Thus
∥Θ1(t, SN1)−Θ1(t, SN2)∥ ≤ κ1∥SN1(t)− SN2(t)∥.

Hence, for Θ1 the Lipschitz condition is obtained. Likewise, for Θ2, Θ3, Θ4, Θ5, Θ6, Θ7, Θ8 and Θ9, the
Lipschitz condition can be conveniently veri�ed and is the same as given below

∥Θ2(t, SE1)−Θ2(t, SE2)∥ ≤ κ2∥SE1(t)− SE2(t)∥.

∥Θ3(t, EC1)−Θ3(t, EC2)∥ ≤ κ3∥EC1(t)− EC2(t)∥.

∥Θ4(t, ENC1)−Θ4(t, ENC2)∥ ≤ κ4∥ENC1(t)− ENC2(t)∥.

∥Θ5(t, C1)−Θ5(t, C2)∥ ≤ κ5∥C1(t)− C2(t)∥.

∥Θ6(t, J1)−Θ6(t, J2)∥ ≤ κ6∥J1(t)− J2(t)∥.

∥Θ7(t, Rs1)−Θ7(t, Rs2)∥ ≤ κ7∥Rs1(t)−Rs2(t)∥.

∥Θ8(t, R1)−Θ8(t, R2)∥ ≤ κ8∥R1(t)−R2(t)∥.

∥Θ9(t,H1)−Θ9(t,H2)∥ ≤ κ9∥H1(t)−H2(t)∥.

Since model (1) follows the population of humans, all its variables of state and the relative parameters
must be positive for the coming time. This shall be demonstrated by the theorem below:

Theorem 4.2. All solutions (SN , SE , EN , ENC , C, J,Rs, R,H) are positive whenever t ≥ 0.

Proof. Count on the state variables all being continuous. So, it is simple to determine from the system (1)
that:
dSN
dt ≥ (φ+ β + µ+ θ)SN − α(1− β)SNC.

dSE
dt ≥ −(1− f)αSEC − (θ + µ)SE .

dEC
dt ≥ −(δ + µ)EC .

dENC
dt ≥ −(eNC + µ)ENC .

dC
dt ≥ −(ϵ+ ϕ+ µ)C.
dJ
dt ≥ −(γη + γ(1− θ) + µ)J.
dRs
dt ≥ −(rs + µ)Rs.
dR
dt ≥ −(rRkR + µ)R.
dH
dt ≥ −µH.
Then, using the variation of constant formula:
dSN
dt ≥ SN (0) exp(−(φ+ β + µ+ θ + α(1− β)C)t) ≥ 0.

dSE
dt ≥ SE(0) exp(−((1− f)αC + (θ + µ))t) ≥ 0.

dEC
dt ≥ EC(0) exp(−(δ + µ)t) ≥ 0.

dENC
dt ≥ ENC(0) exp(−(eNC + µ)t) ≥ 0.

dC
dt ≥ C0(0) exp(−(ϵ+ ϕ+ µ)t) ≥ 0.
dJ
dt ≥ J0(0) exp(−(γη + γ(1− θ) + µ)t) ≥ 0.
dRs
dt ≥ Rs(0) exp(−(rs + µ)t) ≥ 0.
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Table 1: Parameters of the model

Parameters Description

SN (t) Quantity of people who are likely to be out of contact with social media.
SE(t) Quantity of susceptible individuals that are in contact with social media.
EC(t) Quantity of individuals who are exposed to C but do not execute them.
ENC(t) Quantity of individuals who are not exposed to a corrupt person.
C(t) Quantity of corrupt individuals.
J(t) Quantity of jailed individuals.
Rs(t) Quantity of semi-recovered individuals.
R(t) Quantity of recovered individuals.
H(t) Quantity of honest individuals.

Γ Proportion of recruited individuals who are not exposed to social media.
µ Natural death rate.
Π Recruitment number.
β The interaction of SE and ENC .
θ Rate at which individuals in the compartments SN , SE , C or J become honest.
kR Proportion of individuals who join H from R.
ω Decreasing rate of embarrassment
rR Rate at which recovered individuals are Honest.
eNC Rate at which ENC individuals are recovered.
Λ Rate at which imprisoned individuals are semi-recovered.
f Social media usage rate
ks Proportion of individuals who join SE from Rs.
rs Rate at which semi-recovered individuals are honest.
φ Rate at which SN become exposed to social media.
ϕ Rate at which Corrupted individuals are in jail.
ϵ Proportion of individuals who join R or Rs from C.
δ Rate at which EC individuals are corrupted.
η proportion of individuals who join R or Rs from J.

dR
dt ≥ R0(0) exp(−(rRkR + µ)t) ≥ 0.
dH
dt ≥ H0(0) exp(−µt) ≥ 0.
Consequently, the entire solutions sets are positive for t ≥ 0.

4.2. Local dynamic of the corruption free-equilibrium

Because R(t), H(t), and ENC(t) re not present in the �rst three equations and the �fth, sixth, and
seventh, the system (2) can be expressed as below
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dSN
dt

= ΓΠ+ γ(1− θ)J − (φ+ β + µ+ θ)SN − α(1− β)SNC,

dSE
dt

= (1− Γ)Π + φSN + rs(1− ks)Rs − (1− f)αSEC − (θ + µ)SE ,

dEC

dt
= (1− f)αSEC − (δ + µ)EC ,

dC

dt
= (1− β)αSNC + αδEC − (ϵ+ ϕ+ µ)C,

dJ

dt
= ϕC − (γη + γ(1− θ) + µ)J,

dRs

dt
= γηΛJ + ϵ(1− σ)C − (rs + µ)Rs.

(2)

The uncorrupted equilibrium point of the model is achieved by taking all the equations of the model (2)
to zero and allowing. EC = 0, C = 0, J = 0 and Rs = 0.

We then obtain,
E0 = (S0

N , S
0
E , 0, 0, 0, 0),

where

S0
N =

ΓΠ

(φ+ β + µ+ θ)
, S0

E =
(1− Γ)Π + φS0

N

θ + µ
=

Π(φ+ (β + µ+ θ)(1− Γ))

(θ + µ)(φ+ β + µ+ θ)
.

4.3. The corruption reproduction number R0

In epidemiology, the basic reproduction number, or basic reproductive number of an infection is the
expected number of cases directly generated by one case in a population where all individuals are susceptible
to infection. The de�nition assumes that no other individuals are infected or immunized (naturally or through
vaccination). The most important uses of the basic reproduction number denoted by R0 are determining if
an emerging infectious disease can spread in a population and determining what proportion of the population
should be immunized through vaccination to eradicate a disease. The corruption reproduction number of the
model is important for analyzing the stability of the equilibrium points. Furthermore, R0 is used to estimate
the anticipated number of secondary connections arising from the introduction of a newly detected individual
among a sensitive community. Based on the generation matrix method as detailed in [36], we obtain R0

directly from the model. As a �rst step to get R0, we rewrite the equations of the model beginning with the
recently infected categories 

dEC

dt
= (1− f)αSEC − (δ + µ)EC ,

dENC

dt
= βSN − (eNC + µ)ENC ,

dC

dt
= (1− β)αSNC + αδEC − (ϵ+ ϕ+ µ)C,

dJ

dt
= ϕC − (γη + γ(1− θ) + µ)J,

dRs

dt
= γηΛJ + ϵ(1− σ)C − (rs + µ)Rs.

The basic reproduction number R0 is measured as the radius of the spectral ρ of the generation matrix
FV −1.
The matrices of F and V are the result of the infected classes (i.e. EC , ENC , C, J and Rs) at the equilibrium
point E0, and so we have:
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F =


(1− f)αSEC

βSN
(1− β)αSNC

0
0

 ,

and

V =


(δ + µ)EC

eNC + µ)ENC

ϵ+ ϕ+ µ)C − αδEC

γη + γ(1− θ) + µ)J − ϕC
(rs + µ)Rs − ε(1− σ)C − γηΛJ

 ,

as F = [ ∂F
∂Xj

] and V = [ ∂V
∂Xj

], where Xj = (EC , ENC , C, J,Rs).
We have

F =
∂F
∂Xj

(E0) =


0 0 (1− f)αS0

E 0 0
0 0 0 0 0
0 0 (1− β)αS0

N 0 0
0 0 0 0 0
0 0 0 0 0


and

V =
∂V
∂Xj

(E0) =


δ + µ 0 0 0 0
0 eNC + µ 0 0 0

−αδ 0 (ε+ ϕ+ µ) 0 0
0 0 −ϕ γη + γ(1− θ) + µ) 0
0 0 −ϵ(1− σ) −γηΛ rs + µ

 .

We can see that
|V | = (rs + µ)(γη + γ(1− θ) + µ)(ε+ ϕ+ µ)(δ + µ)(eNC + µ).

Then

com(V ) =


c11 c12 c13 c14 c15
c21 c22 c23 c24 c25
c31 c32 c33 c34 c35
c41 c42 c43 c44 c45
c51 c52 c53 c54 c55

 ,

with
c11 = (rs + µ)(γη + γ(1− θ) + µ)(eNC + µ)(ε+ ϕ+ µ),
c12 = c21 = c23 = c24 = c25 = c31 = c32 = c41 = c42 = c43 = 0,
c13 = (rs + µ)(γη + γ(1− θ) + µ)αδ(eNC + µ),
c14 = −(rs + µ)(eNC + µ)αδϕ,
c15 = −(eNC + µ)αδ(ϕγηΛ + (γη + γ(1− θ) + µ)ε(1− σ)),
c22 = (rs + µ)(γη + γ(1− θ) + µ)(δ + µ)(ε+ ϕ+ µ),
c33 = (rs + µ)(γη + γ(1− θ) + µ)(δ + µ)(eNC + µ),
c34 = (rs + µ)ϕ(δ + µ)(eNC + µ),
c35 = (δ + µ)(eNC + µ)(ϕγΛ + (γη + γ(1− θ) + µ)ε(1− σ)),
c44 = (rs + µ)(ε+ ϕ+ µ)(δ + µ)(eNC + µ),
c45 = γηΛ(ε+ ϕ+ µ)(δ + µ)(eNC + µ),
c51 = c52 = c53 = c54 = 0,
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c55 = (γη + γ(1− θ) + µ)(ε+ ϕ+ µ)(δ + µ)(eNC + µ),
then

V −1 =
1

|V |


c11 c21 c31 c41 c51
c12 c22 c32 c42 c52
c13 c23 c33 c43 c53
c14 c24 c34 c44 c54
c15 c25 c35 c45 c55

 ,

thus

FV −1 =
1

|V |


(1− f)αS0

Ec13 0 (1− f)αS0
Ec33 0 0

0 0 0 0 0
(1− β)αS0

Nc13 0 c33(1− β)αS0
N 0 0

0 0 0 0 0
0 0 0 0 0

 .

Hence, the e�ective reproduction number R0 is given as follows

R0 = ρ(FV −1)

=
(1− f)S0

Eα
2δ + (1− β)α(δ + µ)S0

N

(ϵ+ ϕ+ µ)(δ + µ)

=
(1− f)α2δ((1− Γ)Π(φ+ β + µ+ θ) + φΓΠ) + (1− β)α(δ + µ)ΓΠ(θ + µ)

(ϵ+ ϕ+ µ)(δ + µ)(φ+ β + µ+ θ)(θ + µ)

Theorem 4.3. The equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. However, to demonstrate this theorem, let us �rst obtain the Jacobian matrix of the system (2)

J =



J11 0 0 J14 γ(1− θ) 0
φ J22 0 J24 0 J25
0 J32 J33 J34 0 0

(1− β)αC 0 αδ J44 0 0
0 0 0 ϕ J55 0
0 0 0 ϵ(1− σ) γηΛ −(rs + µ)

 . (3)

With
J11 = −(α(1− β)C + (φ+ β + µ+ θ)),
J14 = −α(1− β)SN ,
J22 = −((1− f)αC + (θ + µ)),
J24 = −(1− f)αSE ,
J25 = rs(1− ks),
J32 = (1− f)αC,
J33 = −(δ + µ),
J34 = (1− f)αSE ,
J44 = (1− β)αSN − (ϵ+ ϕ+ µ),
J55 = −(γη + γ(1− θ) + µ).

Evaluating the Jacobean matrix (3) at the equilibrium E0, we obtain

J(E0) =



−(φ+ β + µ+ θ) 0 0 J14 γ(1− θ) 0
φ −(θ + µ) 0 J24 0 J25
0 0 J33 J34 0 0
0 0 αδ J44 0 0
0 0 0 ϕ J55 0
0 0 0 ϵ(1− σ) γηΛ −(rs + µ)

 .



S.Id ouaziz, A.Alla Hamou, M.EL Khomssi, Results in Nonlinear Anal. 5 (2022), 423�451. 434

Based on the Jacobian matrix, a characteristic polynomial was attained in the following form

P(λ) = (φ+ µ+ β + θ + λ)(θ + µ+ λ)(rs + µ+ λ)(γη + γ(1− θ) + µ)P̄(λ),

then
λ1 = −(rs + µ) < 0,

λ2 = −(eNC + µ) < 0,

λ3 = −(θ + µ) < 0,

λ4 = −(φ+ β + µ+ θ) < 0,

λ5 and λ6 are the roots of

P̄(λ) = λ2 + λ((δ + µ)− (1− β)αS0
N + (ϵ+ ϕ+ µ))− [(δ + µ)((1− β)αS0

N − (ϵ+ ϕ+ µ)) + (1− f)αS0
Eαδ],

= λ2 + λζ − υ,

where
ζ = ((δ + µ)− (1− β)αS0

N + (ϵ+ ϕ+ µ)), and υ = [(δ + µ)((1− β)αS0
N − (ϵ+ ϕ+ µ)) + (1− f)αS0

Eαδ],
we got

∆ = ζ2 + 4υ

= ((δ + µ)− (1− β)αS0
N + (ϵ+ ϕ+ µ))2 + 4[(δ + µ)((1− β)αS0

N − (ϵ+ ϕ+ µ)) + (1− f)αS0
Eαδ]

= ((δ + µ)− (ϵ+ ϕ+ µ))2 + ((1− β)αS0
N − (ϵ+ ϕ+ µ))2 + 2(δ + µ)(1− β)αS0

N

+ 4(1− f)αS0
Eαδ − (ϵ+ ϕ+ µ)2,

it is simple to observe that 2(δ + µ)(1− β)αS0
N + 4(1− f)αS0

Eαδ > (ϵ+ ϕ+ µ)2,
then we conclude that ∆ > 0,
and thus

λ5 = −ζ +
√
∆

2
< 0,

λ6 =
−ζ +

√
∆

2

λ6 < 0 for ∆ < ζ2,
then R0(ϵ+ ϕ+ µ)(δ + µ) < (ϵ+ ϕ+ µ)(δ + µ), means R0 < 1
while on the other hand we have
R0 < 1 for

(1−f)S0
Eα2δ+(1−β)α(δ+µ)S0

N
(ϵ+ϕ+µ)(δ+µ) < 1,

then 4υ < 0 includes 4c+ ζ2 < ζ2, what gives λ6 < 0

Therefore, after using the stability Theorem 2.1 , E0 is locally asymptotically stable.
So that corruption can be removed to some extent if the starting population size of the corrupted members

is in the bottom set of the point E0.

4.4. Global dynamic of the corruption free-equilibrium

Theorem 4.4. The corruption free-equilibrium E0 of the model (2) is globally asymptotically stable if R0 < 1.

Proof. We shall consider the Lyapunov function as follows

V = χ1EC + χ2C (4)

where χ1 and χ2 are two positive values.
If we di�erentiate equation (4) concerning t, we discover that.

dV

dt
= χ1

dEC

dt
+ χ2

dC

dt
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By replacing dEC/dt et dC/dt of model (2), we obtain:
dV
dt = χ1((1− f)αSEC − (δ + µ)EC) + χ2((1− β)αSNC + αδEC − (ϵ+ ϕ+ µ)C)

dV
dt = [χ1(1− f)αSE + χ2(1− β)αSN − χ2(ϵ+ ϕ+ µ)]C − (χ1(δ + µ)− χ2αδ)EC

In this case, we take χ2 =
(δ+µ)
αδ χ1,

then

dV

dt
= [χ1(1− f)αSE + χ2(1− β)αSN − χ2(ϵ+ ϕ+ µ)]C

= χ1C[(1− f)αSE +
δ + µ

αδ
(1− β)αSN − (ϵ+ ϕ+ µ)(δ + µ)

αδ
],

As (ϵ+ ϕ+ µ)(δ + µ) =
(1−f)S0

Eα2δ+(1−β)α(δ+µ)S0
N

R0

thus
dV

dt
= χ1C[(1− f)αSE +

δ + µ

αδ
(1− β)αSN −

(1− f)S0
Eα

2δ + (1− β)α(δ + µ)S0
N

R0αδ
]

= χ1C[(1− f)α(SE −
S0
E

R0
) +

(δ + µ)

δ
(1− β)(SN −

S0
N

R0
)]

< χ1C[(1− f)α(S0
E −

S0
E

R0
) +

(δ + µ)

δ
(1− β)(S0

N −
S0
N

R0
)]

< χ1C[(1−
1

R0
)(S0

E(1− f)α+
(δ + µ)

δ
(1− β)S0

N )]

well then, from C < C0 and dV
dt ≤ 0 for R0 < 1 and dV

dt = 0 if and only if C = 0.
Hence, according to Theorem 2.2, E0 becomes globally asymptotically stable.

4.5. The endemic equilibrium "EE"

There is a unique endemic equilibrium of the system (2) given by

EE = (S∗
N , S

∗
E , E

∗
C , E

∗
NC , C

∗, J∗, R∗
s, R

∗, H∗),

from where EE is the solution to the steady-state with corruption in the community. It can be achieved by
nullifying each equation in (2)

dSN
dt

=
dSE
dt

=
dEC

dt
=
dENC

dt
=
dC

dt
=
dJ

dt
=
dRs

dt
=
dR

dt
=
dH

dt
= 0.

Then, we obtain

S∗
N =

ϵ+ ϕ+ µ− αδ(1−f)αS∗
E

δ+µ

(1− β)α
= a1S

∗
E + b, S∗

E =
−m3 −m6C

∗

m4 −m6
. (5)

E∗
C =

(1− f)αS∗
EC

∗

δ + µ
=

−m5(m3 +m6C
∗)

(δ + µ)(m4 −m5)
, J∗ =

ϕC∗

γη + γ(1− θ) + µ
= m1C

∗. (6)

R∗
s =

γηΛm1 + ϵ(1− σ)

rs + µ
C∗ = m2C

∗. (7)

All the expressions are in terms of the C∗

in which C∗ is the positive solution of the equation given below:

AC2 +BC +D = 0, (8)
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with

A = A3m6 −A1m5,

B = A1m4 −A0m5 +A2m6 +A3m3,

D = m4A0 +A2m3,

b =
ϵ+ θ + µ

(1− β)α
,

a1 =
−αδ(1− f)

(δ + µ)(1− β)
,

A0 = ΓΠ+ (φ+ β + µ+ θ)b,

A1 = γ(1− θ)m1 − α(1− β)b,

A2 = (φ+ β + µ+ θ)a1,

A3 = α(1− β)a1,

m1 =
ϕ

γη + γ(1− θ) + µ
,

m2 =
γηΛm1 + ϵ(1− σ)

rs + µ
,

m3 = (1− Γ)Π + φb,

m4 = φa1 − (θ + µ),

m5 = (1− f)α,

m6 = rs(1− ks)m2.

It is necessary to demonstrate that the solution of (8) is both realistic and positive. Consider that

A < 0 and D > 0 ⇐⇒ R0 > 1.

The discriminant of (8) is ∆, such that ∆ = B2 − 4AD. It is simple to observe that D > 0, and mention
that all model parameters are non-negative. Hence if R > 1, then A < 0 and D > 0.
The results for the endemic equilibrium point are as follows:

Theorem 4.5. There is a unique endemic stable point for the system (2) whenever R0 > 1, which is indicated

by

EE = (S∗
N , S

∗
E , E

∗
C , E

∗
NC , C

∗, J∗, R∗
s, R

∗, H∗),
where the expressions of S∗

N , S
∗
E , E

∗
C , E

∗
NC , J

∗, R∗
s, R

∗ and H∗ are given in (5), (6) and (7) and

C∗ = −B−
√
B2−4AD
2A .

4.6. Local dynamic of endemic equilibrium point �EE�

Theorem 4.6. The point EE is locally asymptotically stable, where R0 > 1.

Proof. To establish the above theorem, we must �rst derive the Jacobian matrix of the system (2) :

J =



J11 0 0 J14 γ(1− θ) 0
φ J22 0 J24 0 J25
0 J32 J33 J34 0 0

(1− β)αC 0 αδ J44 0 0
0 0 0 φ J55 0
0 0 0 ϵ(1− σ) γηΛ −(rs + µ)

 .
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The characteristic polynomial of equation (3) at the endemic point EE is given by

P(λ) =Ψ0 + λΨ1 + λ2Ψ2 + λ3Ψ3 + λ4Ψ4 + λ5Ψ5 + λ6.

Where
Ψ0 = −J110b0 + φJ32J660(γ(1− θ)αδϕ+ J550αδJ14) + a5J220J660J330,
J110 = −J11,
J220 = −J22,
J330 = −J33,
J550 = −J55,
J660 = −J66 = (rs + µ),

Ψ1 =− (J110b1 + b0) + φJ32(J660αδJ14 + γ(1− θ)αδφ+ J550αδJ14)

+a5((J220 + J660)J330 + J220J660),
Ψ2 = −(J110b2 + b1) + φJ32αδJ14 + a5(J330 + J220 + J660),

Ψ3 = −(J110b3 + b2) + a5,

Ψ4 = −(J110b4 + b3),
Ψ5 = J110 − b4,
a0 = J220J660J550,
a1 = (J220 + J660)J550 + J220J660,
a2 = J220 + J660 + J550,
a3 = J330J440 + αδJ34,
a4 = J440 − J330,
a5 = (1− β)αC∗(J14J25 − ϕγ(1− θ)),
b0 = a0a3 + J25ϕγηΛ + J32αδJ550J660,
b1 = a1a3 + a0a4 + J32αδJ25(J550 + J660) + ϵ(1− σ)J25,
b2 = a2a3 + a1a4 − a0 + J32αδJ24,
b3 = a3 + a2a4 − a1,
b4 = a4 − a2.

λ6 ψ6 ψ4 ψ2 ψ0

λ5 ψ5 ψ3 ψ1 0
λ4 s1 s2 ψ0 0
λ3 s3 s4 0 0
λ2 s5 s6 0 0
λ s7 0 0 0

s1 =
ψ5ψ4 − ψ3

ψ5
, s2 =

ψ5ψ2 − ψ1

ψ5
, s3 =

s1ψ3 − ψ5s2
s1

,

s4 =
s1ψ1 − ψ5ψ0

s1
, s5 =

s3s2 − s1s4
s3

, s6 =
s3ψ0 − s1s4

s3
.

According to the Routh-Hurwitz criterion [22], the characteristic polynomial has all roots with a non-
negative real part if and only if s1 > 0.
So for s1 to be positive, we must have α(1− β)(SN − C∗) > τ1 + τ2,

As a simpli�cation, we thus obtain R0 > ( τ1+τ2
(SN−C∗) + (1− f)α2δS0

E)
αS0

N
ϵ+ϕ+µ .

Thus s1 > 0 if R0 > 1.
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Where
τ1 =

J11(a3+a2a4−a1−b2
J11(a4−a2)+a1−a3−a2a4

.
τ2 = θ + µ+B.
B = (φ+ β + µ+ ϵ+ ϕ+ µ) + (1− f)αC∗ + (rs + µ) + (γη + γ(1− θ) + µ).
Hence, by Theorem 2.1 the endemic equilibrium EE is locally asymptotically stable.

4.7. The Global dynamic of endemic equilibrium point "EE"

Theorem 4.7. When R0 > 1, the sole endemic steady state of (2) is globally asymptotically stable.

Proof. For example, it is possible to take the following Lyapunov function:

L(SN , C) = χ1(SN − S∗
N ln

SN
S∗
N

) + χ2(C − C∗ ln
C

C∗ ). (9)

where χ1 > 0 and χ2 > 0 are positive constants to be selected next. Obviously L is C1, L(EE) = 0, and
L is strictly positive at other points.
Deriving equation with respect to t, we have

dL(SN , C)

dt
= χ1(1−

S∗
N

SN
)
dSN
dt

+ χ2(1−
C∗

C
)
dC

dt
. (10)

By substituting dSN
dt et dC

dt of model (2), we obtain,

dL

dt
=χ1(1−

S∗
N

SN
)(ΓΠ + γ(1− θ)J − (φ+ β + µ+ θ)SN − α(1− β)SNC)

+ χ2(1−
C∗

C
)((1− β)αSNC + αδEC − (ϵ+ ϕ+ µ)C).

From system of equations (2), we have
ΓΠ + γ(1− θ)J = (a+ α(1− β)C)S∗

N and αδEC = (b− (1− β)αSN )C∗. Then

dL

dt
= − χ1

SN
(a+ α(1− β)C)(SN − S∗

N )2 − χ2

C
(b− (1− β)αSN )(C − C∗)2. (11)

Factorizing equation, we have

dL

dt
=

(1− β)α

SNC
(χ2S

2
N (C − C∗)2 − χ1C

2(SN − S∗
N )2)− 1

SNC
(χ1C(SN − S∗

N )2a+ χ2SN (C − C∗)2b).

Where,
a = (φ+ β + µ+ θ), and b = (ϵ+ ϕ+ µ)
χ2SN (C − C∗)2b is a positive term, then

dL

dt
<

(1− β)α

SNC
(χ2S

2
N (C − C∗)2 − χ1C

2(SN − S∗
N )2)− 1

SNC
(χ1C(SN − S∗

N )2a)

< −
R0bχ1C

2(SN − S∗
N )2

SNCS0
N

+
χ1(1− f)α2δS0

E

SNCS0
N (δ + µ)

+ (
(1− β)α

SNC
− χ2SN )(C − C∗)2b

SNC

For χ1 =
SNC(C−C∗)2S0

N
(SN−S∗

N )2
, and χ2 = 1, we have

dL
dt < [−R0bC

2 +
(1−f)α2δS0

E

S0
N (δ+µ)

+
(1−β)αS2

N
SNC − b

C ](C − C∗)2,

Thus,dLdt < 0 only if R0 > 1, and dL
dt ≤ 0 if C = C∗, then by Theorem 2.2 the equilibrium EE is globally

asymptotically stable.
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5. Analysis of the sensitivity of the model parameters in relation to R0.

During the very rapid spread of the virus, a way of controlling it, is, trying to reduce it. Sensitivity
analysis is one of the most e�ective ways to investigate the importance of each parameter separately in the
transmission of the disease. Speci�cally, the de�nition of the normalized forward sensitivity index indicates
the meaning of the variable associated with each parameter of the model to minimize the risk of any disease.
Consequently, only the sensitivity analysis can determine how the ambiguity of the parameter is a�ected, we
thus express a sensitivity coe�cient as follows [17].

De�nition 2. To examine the sensitivity of R0 to each of its parameters, the normalized forward sensitivity
index concerning each parameter is computed below:

ΓR0
x =

∂R0

∂x

x

R0
.

ΓR0
f = −

αδS0
E

(1− f)αδS0
E + (1− β)(δ + µ)S0

N

,

= − fα2δ((1− Γ)(φ+ β + µ+ θ) + φΓ)

(1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ)
.

ΓR0
α =

α[2α(1− f)δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)(δ + µ)Γ(θ + µ)]

(1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ)
.

ΓR0
δ =

δ(1− β)α(δ + µ)Γ(θ + µ)(δ + µ− 1)

(δ + µ)((1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ))
.

ΓR0
β = − β[α(δ + µ)Γ(θ + µ)(φ+ β + µ+ θ) + (1− f)α2δφΓ + (1− β)α(δ + µ)Γ(θ + µ)]

(φ+ β + µ+ θ)[(1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ)]
.

ΓR0
Π = 1.

ΓR0
Γ =

Γ[−(1− f)α2(β + µ+ θ) + (1− β)α(δ + µ)(θ + µ)]

(1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ)
.

ΓR0
φ =

φ[(1− f)α2δΓ(β + µ+ θ)− (1− β)α(δ + µ)(θ + µ)Γ]

(φ+ β + µ+ θ)[(1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ)]
.

ΓR0
ϕ =

ϕ(ϵ+ ϕ+ µ− 1)

(ϵ+ ϕ+ µ)
.

ΓR0
ϵ =

ϵ(ϵ+ ϕ+ µ− 1)

(ϵ+ ϕ+ µ)
.

ΓR0
µ =

µ((1− f)α2δ(1− Γ) + (1− β)αΓ)(ϵ+ ϕ+ µ))

[(1− f)α2δ((1− Γ)(φ+ β + µ+ θ) + φΓ) + (1− β)α(δ + µ)Γ(θ + µ)]
− µ(r1 + 2r2µ+ 3r3µ

2 + 4µ3)

(ϵ+ ϕ+ µ)(δ + µ)(φ+ β + µ+ θ)(θ + µ)
.

ΓR0
θ = θ[((1−f)α2δ(1−Γ)+(1−β)α(δ+µ)Γ)(φ+β+µ+θ)(θ+µ)−((1−f)α2δ((1−Γ)(φ+β+µ+θ)+φΓ)+(1−β)α(δ+µ)Γ(θ+µ)(φ+β+2µ+2θ)]

(φ+β+µ+θ)(θ+µ)[(1−f)α2δ((1−Γ)(φ+β+µ+θ)+φΓ)+(1−β)α(δ+µ)Γ(θ+µ)]
.

Where

r1 = (ϵ+ ϕ)δ(2θ + φ+ β) + (δ + ϵ+ ϕ)(φ+ β + θ)θ.

r2 = (ϵ+ ϕ)δ + (δ + ϵ+ ϕ)(2θ + φ+ β) + (φ+ β + θ)θ.

r3 = (δ + ϵ+ ϕ+ 2θ + φ+ β).

We have
ΓR0
α ,ΓR0

δ ,ΓR0
Π ,ΓR0

θ ,ΓR0
ϕ ,ΓR0

ϵ > 0 while, ΓR0
f ,ΓR0

β ,ΓR0
µ ,ΓR0

φ ,ΓR0
Γ < 0.



S.Id ouaziz, A.Alla Hamou, M.EL Khomssi, Results in Nonlinear Anal. 5 (2022), 423�451. 440

Table 2: Sensitivity index table

Symbol of the parameter Index of sensitivity

β -v
α +v
µ +v
Γ -v
θ +v
Π +v
φ -v
δ +v
eNC -v
f -v
ϵ -v

This means that R0 increased in α, δ, Π, θ, ϕ and ϵ, when R0 decreases in f, β, µ, φ and Γ
R0 does not depend on ω, rs, γ, η, ks, rs, kR, rR and Λ, then
ΓR0
ω = 0,ΓR0

rs = 0,ΓR0
Λ = 0,ΓR0

ks
= 0,ΓR0

rR
= 0,ΓR0

kR
= 0 and ΓR0

η = 0.

6. Application of the model to optimal control

The optimal control for corruption consists of reducing the size of the exposed and corrupted components
of the population to a minimum. The majority of authoritarians are willing to engage in corrupt tactics or
enter into unjust agreements, which discourages honest citizens with few resources. Due to new technologies,
it is not necessary to have a bunch of money or power to bring corruption to light and combat it, we can
use social media and web-based platforms. In India, for example, a couple has created an anti-corruption
website where people can report cases when they have been requested to pay bribes. An optimal control
model for this was designed, using two controls below: ν1: put corrupt individuals in jail and give a penalty.
The media can inform and teach people about the damaging e�ects of corruption and, through public ex
posure increase the political danger of those engaged in corrupt activities.
So we can word ν2 as following:
ν2: Combat corruption through the media and publicity for raising awareness.
By including both of the controls on the model (2), the optimal control model is given as follows:



dSN
dt

= ΓΠ+ γ(1− θ)J − (φ+ β + µ+ θ + ν1)SN − α(1− β)(1− ν1)SNC,

dSE
dt

= (1− Γ)Π + (φ+ ν1)SN + rs(1− ks)Rs − (1− f)α(1− ν2)SEC − (θ + µ+ ν1)SE ,

dEC

dt
= (1− f)(1− ν2)αSEC − (δ + µ+ ν1)EC ,

dC

dt
= (1− β)α(1− ν2)SNC + α(δ + ν1)EC − (ϵ+ ϕ+ µ+ ν2)C,

dJ

dt
= (ϕ+ ν2)C − (γη + γ(1− θ) + µ)J,

dRs

dt
= γηΛJ + (1− σ)(ϵ+ ν2)C − (rs + µ)Rs

(12)
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There are two control factors ν1 and ν2 that minimize the optimal control model (1) given the objective
function explained as such

J(ν1, ν2) =

∫ tf

t0

[A1EC +A2ENC +A3C +
1

2
(ω1ν

2
1 + ω2ν

2
2)]dt, (13)

where the terms Ai=1,2,3 are constants and are de�ned as the equilibrated cost factors of the corrupted and
exposed members, respectively, and the weights of the values of each individual control measure are w1 and
w2, the initial time is t0 = 0 and the �nal time is tf .
We evaluate the quadratic objective function because the intervention is non-linear, for more details see the
connected works and citations [25, 42, 29]. Therefore, we aim to have an optimal control ν∗1 , ν

∗
2 such that

J (ν∗1 , ν
∗
2) = min {J (ν1, ν2) | (ν1, ν2) ∈ U} ,

where U = {(ν1, ν2) | νi(t) is lebesgue measurable on [0, tf ], 0 ≤ νi(t) ≤ 1, i = 1, 2} is the closed set.

7. The hamiltonian and optimality system

Seem necessary for the optimal control to verify the condition imposed by the Pontryagin maximum
principle. The above principle converts the equation system (12) and (13) into a problem of minimizing a
pointwise Hamiltonian M , relative to ν1 and ν2. Both the Lagrangian L and the Hamiltonian M of the
above optimal control system are de�ned as shown below

L = A1EC +A2ENC +A3C +
1

2
(ω1ν

2
1 + ω2ν

2
2),

and

M = A1EC +A2ENC +A3C +
1

2
(ω1ν

2
1 + ω2ν

2
2)

+ λ1[ΓΠ + γ(1− θ)J − (φ+ β + µ+ θ + ν1)SN − α(1− β)(1− ν1)SNC]

+ λ2[(1− Γ)Π + (φ+ ν1)SN + rs(1− ks)Rs − (1− f)α(1− ν2)SEC − (θ + µ+ ν1)SE ]

+ λ3[(1− f)(1− ν2)αSEC − (δ + µ+ ν1)EC ]

+ λ4[(1− β)α(1− ν2)SNC + α(δ + ν1)EC − (ϵ+ ϕ+ µ+ ν2)C]

+ λ5[(ϕ+ ν2)C − (γη + γ(1− θ) + µ)J ]

+ λ6[γηΛJ + (1− σ)(ϵ+ ν2)C − (rs + µ)Rs].

With λi, i = 1, . . . , 9 be used as the adjoint variable functions that shall be found. Due to the convexity
of the integrate of J . Regarding ν1 and ν2, the priory bounds in conditional solutions, and the Lipschitz
criterion of the bound conditional system, then the existence of the optimal control has been proved through
[26].

Theorem 7.1. Assume that we have optimal controls u∗1, u∗2 and SN , SE , EC , ENC , C, J,Rs, R,H respective

state system solutions that minimizes J on U , there are adjoint variables, λ1, . . . , λ9 from which
dλ1
dt = − ∂M

∂SN
= λ1((φ+ β + µ+ θ + ν1) + α(1− β)(1− ν1)C)− λ2(φ+ ν1)− λ4((1− β)α(1− ν2)C,

dλ2
dt = − ∂M

∂SE
= λ2((1− f)α(1− ν2)C + (θ + µ+ ν1))− λ3(1− f)(1− ν2)αC,

dλ3
dt = − ∂M

∂EC
= λ3(δ + µ+ ν1)− λ4α(δ + ν1),

dλ4
dt = −∂M

∂C = λ1(α(1− β)(1− ν1)SN + λ2(1− f)(1− ν2)SE − λ3((1− f)(1− ν2)αSE
− λ4((1− β)α(1− ν2)SN − (ϵ+ ϕ+ µ+ ν2))− λ5(ϕ+ ν2)− λ6(1− σ)(ϵ+ ν2),

dλ5
dt = −∂M

∂J = −λ1(γ(1− θ) + λ5(γη + γ(1− θ) + µ)− λ6γηΛ,
dλ6
dt = − ∂M

∂Rs
= −λ2rs(1− ks) + λ6(rs + µ).
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With transversality conditions λi(tf ) = 0 pour i = 1 . . . 9.
Furthermore, the associated optimal controls ν∗1 , ν

∗
2 are obtained from ∂M

∂ν1
= 0, ∂M

∂ν2
= 0. Thus, we got the

characteristic equation in standard control arguments form involving the bounds on the controls as follows

ν∗1 = min {1,max(0,Φ1)} ,
ν∗2 = min {1,max(0,Φ2)} ,
where

Φ1 =
λ3EC−(λ4αEC+λ1(α(1−β)SNC−SN )+λ2(SN−SE))

ω1
,

Φ2 =
λ3(1−f)αSEC+λ4((1−β)αSN−1)C+λ2(1−f)αSEC−(λ5+λ6(1−σ))C

ω2
.

8. Numerical simulation and discussions

Analytical research will never be complete without numerical validation of the data. In the present
section, we have presented some numerical simulations to follow the dynamics of the system (2) for various
initial conditions and parameters given in Tables 3 and 4.

Thus to solve our model we have used the fourth-order Runge-Kutta method (RK4) in Matlab software.
We took into account the parameters listed in Table 3 as well as the di�erent values of the initial conditions
given in Table 4.

By using this parameters we have calculated the reproduction number and we �nd that R0 = 0.3865. Wa
have solved in this case our model by using this set of parameters and initial conditions and we present the
results in graphical form. It is seen clearly from Figure 2 that the solution pro�les of system (2) converges
to the corruption-free equilibrium

E0 = (0.059× 107, 1.0535× 107, 0, 0, 0).

By replacing the value of α to 0.0002 we �nd R0 = 3.8662 > 1 then from Theorem 4.7 the Endemic Equi-
librium is asymptotically stable, this result is shown in Figure 3. As indicated in Figure 4 we experimented
the e�ect of changing the initial conditions of SN and SE , thus R0 = 0.3865 then we have the stability of
SN and SE for the corruption-free equilibrium. Furthermore, it is seen from Figure 5 that the solution of
(2) converges to the the endemic equilibrium

EE = (1.4978× 107, 0.9096× 107, 2.6159× 107, 2.6581× 107, 3.8366× 107, 2.5910× 107)

in all the three di�erent initial values of SE(0) and SN (0). Figure 6 shows the stability of the solution of
(2) in the three di�erent values of EC(0) and C(0), while the Figure 7 shows that the solution converges to
the endemic equilibrium in the same three initial values of EC(0) and C(0) with α = 0.0002. It is clear from
Figure 8 that the solution of (2) is stable and converges to the corruption-free equilibrium in all the three
di�erent initial values of individuals J(0) and Rs(0), while in Figure 9, with the same initial values of J(0)
and Rs(0) and α = 0.0002, so that R0 = 3.8662 then the solution converges to the endemic equilibrium.

Finally, all results of this section support the theoretical results of the local and the global asymptotic
stability of corruption-free and endemic equilibrium presented in the previous sections.

9. Conclusion

In this paper, we suggest a novel mathematical model that considers corruption as an infectious disease.
This model is more general than the ones which exist in the literature today. The dynamics of the interaction
between the compartments are described mathematically by a system of nine ODEs. This paper attempts
to prove the existence and uniqueness of the solution to our problem via the �xed point theorem. The
generation matrix is used to determine the basic reproduction number R0. The question of the stability
of equilibrium points of the model is well examined throughout the paper. On the one hand, there is that
which is asymptotically stable and that which is globally stable. Also, the paper highlights the importance of
each parameter for the transmission of corruption by applying the concept of normalized forward sensitivity.
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Table 3: Basic values for Parameters of system (2)

Parameter Value Source

µ 0.011 ≤ µ ≤ 0.021 [12]
p 0.036 Assumed
θ 0.000001 [12]
σ (0,1) Varied
φ 0.02 Assumed
f (0.1) Varied
ω 0.001 Assumed
τ (0.1) Varied
η 0.0001 Assumed
Π 30.000 [12]
Λ 0.01 Assumed
eNC 0.02 Assumed
ψ 0.143 [12]
rR 0.02 Assumed
e (0.1) Varied
rs 0.01 Assumed
ks 0.001 Assumed
ϕ 0.0001 τ [12]
kR 0.01 Assumed

Table 4: Initial values of variables of system (2)

Initial values Case 1 Case 2 Case 3

N 2330769 2330769 2330769
SN (0) 2229903 2082863 1104763
SE(0) 100000 200000 300000
EC(0) 100 500 1000
C(0) 10 3000 400000
J(0) 50 400 2000
Rs(0) 100 1000 7000
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Figure 2: The graphical representation of the model solution in the �rst case. This �gure shows that the
corruption-free equilibrium of system (2) is (0.059× 107, 1.0535× 107, 0, 0, 0).
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Figure 3: The graphical representation of the model solution in the second case. This �gure shows that
the endemic equilibrium of system (2) is (1.4978 × 107, 0.9096 × 107, 2.6159 × 107, 2.6581 × 107, 3.8366 ×
107, 2.5910× 107).
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Figure 4: Numericals solutions of the model for parameters and di�erent initial conditions of SN and SE
given in Tables 3 and 4, here R0 = 0.3865 and the stability is for the corruption-free equilibrium .

0 1 2 3 4 5 6 7 8 9 10

Time t (years)

0

0.5

1

1.5

2

2.5

3

3.5

4

P
o
p
u
la

ti
o
n

105

SE(0)=100000

SE(0)=200000

SE(0)=300000

(a) Case 9

0 1 2 3 4 5 6 7 8 9 10

Time t (years)

0

0.5

1

1.5

2

2.5

P
o
p
u
la

ti
o
n

106

SN(0)=2229903

SN(0)=2082863

SN(0)=1104763

(b) Case 10

Figure 5: Numericals solutions of the model (2) for parameters and di�erent initial conditions of SN and SE
given in Tables 3 and 4, here R0 = 3.8662 and the stability is for the endemic equilibrium .
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Figure 6: Numericals solutions of the model (2) for parameters and di�erent initial conditions of EC and C
given in Tables 3 and 4, here R0 = 0.3865 and the stability is for the corruption-free equilibrium .
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Figure 7: Numericals solutions of the model (2) for parameters and di�erent initial conditions of EC and C
given in Tables 3 and 4, here R0 = 3.8662 and the stability is for the corruption-free equilibrium.
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Figure 8: Numericals solutions of the model (2) for parameters and di�erent initial conditions of J and Rs

given in Tables 3 and 4, here R0 = 0.3865 and the stability is for the corruption-free equilibrium .
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Figure 9: Numericals solutions of the model (2) for parameters and di�erent initial conditions of J and Rs

given in Tables 3 and 4, here R0 = 3.8662 and the stability is for the endemic equilibrium .



S.Id ouaziz, A.Alla Hamou, M.EL Khomssi, Results in Nonlinear Anal. 5 (2022), 423�451. 449

f

\varphi

Parameters

-1.5

-1

-0.5

0

0.5

1

1.5

V
a

lu
e

 o
f 

s
e

n
s
it
iv

it
y
 i
n

d
ic

e
s
 

Figure 10: Sensitivity analysis of R0 with respect to model parameters

Likewise, the theory of optimal control is employed to investigate under what conditions the di�usion of
corruption can be successfully controlled and to study the e�ect of a possible combination of both controls
on the corruption's transmission. Finally, the analytical result is veri�ed by using digital simulations.
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