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Abstract
The disease of leishmaniasis is one that takes some research and study to fully comprehend. As a 
result, mathematical modeling can be utilized to gain insight into and enhance the accuracy of epi-
demiological forecasts. A friction model of Leishmaniasis was analyzed using empirical data from 
Sudan by factoring in the derivatives of Caputo and Atangana-Baleanu. The Caputo and AB deriva-
tives have been subjected to a stability study. A numerical simulation of the suggested ordinary and 
fractional differential mathematical model follows. The performance was evaluated by calculating its 
error rating.
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1. Introduction

Visceral leishmaniasis is a fatal disease transmitted by sandflies. India, Bangladesh, and Nepal have 
reduced cases of leishmaniasis. Less progress has been made in East Africa, particularly with the 
continuing epidemic in South Sudan and outbreaks of visceral leishmaniasis. Lack of infrastructure, 
healthcare personnel, displacement, and malnutrition hamper VL management, diagnostic kits, and 
medication. However, resistance to pentavalent antimony is a key obstacle that must be overcome 
before VL may be treated and brought under control. In order to reduce the total amount of time spent 
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receiving treatment for this condition, the first line of treatment, which consisted of sodium stiboglu-
conate for 30 days, has been switched out for a more effective injectable combination regimen that 
includes SSG and PM, which lasts for only 17 days. Relapse in therapy can occur as a consequence of 
HIV, tuberculosis, malnutrition, or poor treatment, resulting in the parasite remaining in the blood 
after the first clinical treatment. Malnutrition is another factor that can contribute to relapse in 
treatment. Because it is difficult to keep track of active patients in Sudan, the country’s rates of VL 
recurrence are unintentionally and passively increasing because the country accepts VL retreat as a 
part of the total number of VL admissions [1–7].

Over the course of the last three decades, the fractional calculus has emerged as a topic of increas-
ing interest and significance. The fields of physics, chemical engineering, mathematical biology, and 
even economics all make use of fractional differential equations and nonlinear equations [8–16].

2. Preliminaries

Definition 1. The Riemann-Liouville fractional integral (RLI) operator of order � � 0  for a function 
y( )τ  is given by [17]:
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Definition 2. Caputo derivative of order 0 1� � � �n n�  with the lower limit zero for a function y( )τ  
is given by [18]:
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Definition 3. For y H t t 1 0 0( , ), > , T � 0 0 1, ( , ]� �� . Then the ABC fractional operator [19] y(t) in the 
Riemann–Liouville is given by
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In this expression B( )α  satisfies the condition B B( ) ( )0 1 1= = .

Definition 4. The Mittag-Leffler function (MLF) is a generalization of the exponential function. This 
function can be expressed as follows:
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3. Anthropological Visceral Leishmaniosis Model with Caputo Derivative

In this Section, the mathematical model of leishmaniasis is a compartmental model with four sub-pop-
ulations: susceptible, infectious, Recovered, and Recovered and have permanent immunity, for human 
population and two compartmental for reservoir population Susceptible, infected, in addition to that, 
we have two compartments for sandflies Susceptible, infected. The human population is the only pop-
ulation in the model that has permanent immunity. The positivity, the number of reproductions, and 
the equilibrium solutions of the model established in this work have all been determined to be free 
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of leishmaniasis. Furthermore, the existing cases of leishmaniasis have also been determined along 
with their respective localities and global stability properties. we obtain the fractional model formu-
lation under Caputo derivative:
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The system of differential equations is given by:
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With initial conditions:
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4. Anthropologic Visceral Leishmaniosis Model with ABC Derivative

We obtain the fractional model formulation under Atangana–Baleanu Caputo derivative:
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The system of differential equations is given by:
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With initial conditions:
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5. Stability Analysis

This section covered aspects including the eigenvalues, Jacobian matrix, and equilibrium points of the 
kala-azar epidemiological model (1).

5.1. Equilibria

5.2. The Jacobian Matrix for the Model

Here, we discuss this epidemiological model stability. The disease free equilibrium point is given as 
E1 = (0,0,0,0,1,0,711.58,1) and the endemic equilibrium points E8 =(0,0,0,5.1155e8,0,0,0,0).
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5.3. The Basic Reproduction Number

The basic reproduction number is a baseline statistic in epidemiology and is represented by R0 , which 
stands for the predicted value of the secondary infections rate per time unit. Using the equation’s frac-
tional model (1), We have fours infected classes, rewrite the system of equation (1) for the susceptible 
and infected classes in the general form:
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Now the Jacobian of f x( )  and v x( ) of the disease free equilibrium point is:
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Lemma 3.1. The disease-free equilibrium E0  is locally asymptotically stable if.
R0 1<  and unstable if R0 1> .

6. Simulation

In this section, we simulate our model. Table 1 shows the variable values utilized, 
and Table 2 shows the parameter values used, together with the initial condition, 
s P i r s I sH H H H R R V( ) , ( ) , ( ) , ( ) , ( ) , ( ) , ( )0 50 0 0 0 1 0 0 0 22 0 1 0 12= = = = = = = ,, ( )�iV 0 1= .
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Table 2: Parameter values
Parameter Description Value Source
a Biting rate of sandflies 0.2856 day−1 [16]
b Progression rate of VL in sandfly 0.22 day−1 [16]
c Progression rate of VL in human and reservoir 0.0714 day−1 [27]
AH Human recruitment rate 10.1009 day−1 Estimated
AR Reservoir recruitment rate 19.7795 day−1 Estimated
AV Vector recruitment rate 38858.62 day−1 Estimated
µh Natural mortality rate of humans 4.341e-6 day−1 [2]

µr Natural mortality rate of reservoirs 0.0017 day−1 [1]

µv Natural mortality rate of vectors 0.0668 day−1 [1]

α1 Treatment rate of VL 0.02 [2]

α2 PKDL recovery rate without treatment 0.033 [42]
σ Recovery rate from VL infection after treatment 0.9 [1]
1 �� Developing PKDL rate after treatment 0.1 [1]
δ Death rate due to VL 0.011 [35]
β PKDL recovery rate after treatment 0.9 [1]

Table 1: Variable values
Variable Description
NH(t) Human host population
NR(t) Reservoir host population
NV(t) Vector population
SH(t) Susceptible humans
PH(t) Recovered and have permanent immunity
IH(t) Infected humans
RH(t) Recovery humans
SR(t) Susceptible reservoir
IR(t) Infected reservoir
SV(t) Susceptible sandflies
IV(t) Infected sandflies

Table 3: Equilibria of the model
Ei Equilibria
E1 (0,0,0,0,1,0,711.58,1)
E2 (32.5436,0.1132,711.5801,22.7897,–29.7254,–1.9314,0,0)
E3 (–31.1459,–0.0488,711.58,–21.8109,33.9641,–1.7693,0,0)
E4 (85.0303,0–72.8759,711.5801,59.5451,–82.2121,–71.0578,0,0)
E5 (2.8182,0.0062,–2.8244,0,0,–1.8244,714.4046,0)
E6 (2.8182,0.0062,711.5801,252.9373,0,–1.8244,0,0)
E7 (0,0,0,0, –7.2892e11, 7.2892e11,0,0)
E8 (0,0,0,5.1155e8,0,0,0,0)
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Table 4: The eigenvalues corresponding to matrix J  are.
λi Eigenvalues Stability
λ1 (17.833,0,0,0,0,0,0, -17.833) Unstable

λ2 (− −3 438 11. e ,-2.8e− −8 , 2.8e e− −− − −8 84 297 0 31 0 933, . , . , . ,− −035456 6 1 14 10. , . e ) Stable

Figure 1: Figures of the systems of fractional orders model for � � 0 99. .
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Figure 2: Figures of the fractional orders model for � �1.
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7. Conclusion

We used MATLAB to simulate the Caputo derivative and the AB derivative-based fractional model. 
Furthermore, the model calculations and the corresponding graphs of the fractional derivative pro-
vide a comprehensive explanation of Leishmaniosis. The use of fractional derivatives is suggested for 
a more accurate depiction of the Leishmaniosis pandemic. The AB derivative’s superior predictive 
power may be traced back to the fact that the relevant model has a non-singular kernel.
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