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Abstract

In this paper, the controllability of fuzzy solutions for a second-order nonlocal impulsive neutral func-
tional differential equation with both nonlocal and impulsive conditions in terms of fuzzy are consid-
ered. The sufficient condition of controllability is developed using the Banach fixed point theorem and
a fuzzy number whose values are normal, convex, upper semi-continuous, and compactly supported
fuzzy sets with the Hausdorff distance between a-cuts at its maximum. The a-cut approaches allow
to translate a system of fuzzy differential equations into a system of ordinary differential equations
to the endpoints of the states. An example of the application is given at the end to demonstrate the
results. These kinds of systems come in use for designing landing systems for planes and spacecraft,
as well as car suspension systems.
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1. Introduction

Control theory 1s a fascinating part of application-oriented mathematics that deals with the funda-
mental ideas that support control framework analysis and design. The main objective of the control
theory is to perform specific tasks by the system applying appropriate control. Controllability is well
recognized in the context of control systems and comprises a central location. In controllability, one
analyses the possibility of changing a system from a given state (initial state) to a certain required
final state by using a set of permissible controls. One main presumption in the control system is that
all its components are involved with complete precision. Moreover, control systems related to reason-
able circumstances are characterized by fuzziness. Fuzzy set theory, introduced by [21] is competent
to take care of such kind of fuzziness. Since a fuzzy differential equation describes a fuzzy control
system with some initial conditions (fuzzy or non-fuzzy). So, first, we study some results pertaining to
fuzzy differential equations, see ([10], [16], [11]), and references therein.

Neutral functional differential equations emerge in various disciplines of applied mathematics and
so these equations have become more important in a few decades. For more detail on neutral func-
tional differential equations, refer [13], and the references therein. Different kinds of mathematical
models in the study of population dynamics, biology, ecology, and epidemics can be represented as
impulsive neutral differential equations. The theory of these equations has been examined by many
authors ([9], [14], [20]). The vehicle industry has closely examined and is still curious about, the
vehicle suspension system since it is the component that physically isolates the vehicle body from the
wheels of the car to move forward the ride stability, comfort, and street dealing with of vehicles.

The issues which can be modeled in form of impulsive control systems experience sudden changes
at certain focuses of time. Generally, impulses are not defined in a precise manner. So fuzzy impulsive
condition may be better than to simple impulsive condition. For more details on fuzzy and non-fuzzy
impulsive differential equations, we refer to see ([5], [18]) and references therein. [19] studied the
periodic boundary value problems for second-order impulsive integrodifferential equations.

[7] studied the controllability for the following impulsive fuzzy neutral functional integrodifferen-
tial equations using Banach fixed point theorem.

D lwty+ gltx)] = Ax) + f(tx,, [ att.s,x)ds) + u(tyit e T =[0,71,

dt
x(0) =peE", (1.1)
Ax(t,) =Ix(t,)t#t,,k=1,2,....m

The controllability of impulsive second-order semilinear fuzzy integrodifferential control systems
with nonlocal initial conditions has been studied by [17]. Controllability of second-order impulsive
neutral integrodifferential systems with an infinite delay has been studied by [3].

Recently, [1] studied the controllability results of fuzzy solutions for the following first-order non-
local impulsive neutral functional differential equation using the Banach fixed point theorem

%[x(t) —h(t,x,)] =Ax(@)+ f(t,x,) +u(t);t eJ =[0,T],
Ax(t),) =Lx(t,),t#t,k=1,2,...,p (1.2)
x(t) + g(xT1 = ,...,pr )t) =o(t),te[-r,0]

[6] studied the controllability of the following second-order neutral impulsive differential inclusions
with non-local conditions

%[x'(t) CFGx(h )] € Ax(t) + G(t, x(hy (1)), x'(y (1)) + Bu(t);
Ax(t,,) =Ix,)t#t,k=1,2,...,p (1.3)
Ax'(t,) =Lx(t;)t#t,k=1,2,....p

x(0) + g(x) =x4;x'(0)=y,,t €J =[0,b];t % ¢,.
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[8] studied the existence of fuzzy solutions for nonlocal impulsive neutral functional differential equa-
tions. In this paper, we attempt to establish controllability results for a class of fuzzy control systems
governed by a fuzzy differential equation of second order coupled with nonlocal and impulsive condi-
tions using the a-cut technique. In fact, nonlocal conditions are more viable for depicting the physical
measurement rather than classical conditions (see for instance ([12], [4]), and references therein). We
have discussed the controllability of fuzzy solutions for the following second-order non-local functional
differential equations with an impulse which is an extension to the work done in [15]. Here both non-
local as well as impulsive conditions are considered fuzzy.

% [x'(®) - h(,x,)] = Ax(t) + f(t,x,,x,) + Bu(t);t e J =[0,T],

Ax(t,) =Ix(t,)t#t,k=12-,p

Ax'(t,) =Lx(t;),t#t,,k=1,2,--,p (1.4)
x(O) + g(xf ?x-; y X )(t) = ‘P(t),t € [_r’O]a

x'(0) =Y

where A,B:J — E" is the fuzzy coefficient, E" is the set of all upper semi-continuous, convex, normal
fuzzy numbers with bounded o levels.

The functions f:JJ xC([-r,0],E")xC([-r,0],E")—>E", h:JxC([-r,0],E")— E" and g:(C[-r,0],E")?
—E" are non-linear regular fuzzy functions and ¢:[-r,0] > E",0<t <t,<..< t,<T, peN.
u:J — E" is an admissible control function and I,,I, € C(E",E") are bounded functions.

Ax(t,) = x(t; ) — x(t,), Ax'(t,) = x'(t)) — x'(t;,), x(t;,), x'(¢, ), x(t, ) and x'(¢;) represents the left and right
limits of x(¢) and x'(¢) at t =t,,k=1,2,---, p; respectively,

x(67) = limpoo % + ), X)) = limpoo %t + 1), x(t) = limpse x4, —h) and %) = im0 ', — h).

Moreover, x,(.) represents the history where x,(0) = x(¢ +0);0 <[-r,0].
Let Q be the space givenby Q={x|x:J - E";x, e C(J,E"): k=1,2,..., p and there exists x(t, ) and
x(t, );k=1,2,...,p with

x(t,) = x(,),x(0) + g(xr1 = ,...,pr )(&) = o(t)}.

We define Q'=QnC(J,E")={x"|x":J > E";x, e C(J,E"): k=1,2,...,p and there exists x'({,) and
x'(t,);k=1,2,---, p with x'(,) = x(t,) and x'(0) = y,}.

We also present phase space B, ={¢:[-»,0] > E such that for any r>0,¢(0) is bounded and

measurable function on [-r,0] and I h(s) sup |p(0)|ds < +xo}, where B, is endowed with the norm
$<0<0

lolls, = [ () sup |p(©) | ds, Ve < B,

$<0<0

Note that, (Bh I|- ||3 ) is a Banach space.

The paper is orgamzed as follows: Section 2 summarizes the fundamental heuristics. The controlla-
bility results of the fuzzy solutions to non-local second-order neutral functional differential equations
with impulse are proved using the Banach fixed point theorem in Section 3. An example has been
provided to support the theory in Section 4. Section 5 contains an application with a graphical repre-
sentation of the solution and finally, the conclusion is given in Section 6.

2. Fundamental Heuristics
2.1 Definition: Fuzzy Set

A fuzzy set A < X # ¢ is characterized by its membership function A: X —[0,1] and A(x) is inter-
preted as the degree of membership of element x in fuzzy set A for each x € X.
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2.2 Definition

Let CC(R™) denote the family of all nonempty, compact, and convex subsets of R". Define addition and
scalar multiplication in CC(R") by

A+B={z:z=x+y,xcA,ye B}
and
AM={z:z=Ax,x e A} VA =0and VA,B c CC(R").

Let J =[a,b] = R be a compact interval and denote

E" ={w:R" —[0,1] such that w satisfies (1) — (4) as below}:

w is normal, that is, there exists an xo € R" such that w(xo) =1.
w is fuzzy convex, that is, w(A x+ (1 — 1) 2) = min(w(x),w(2)).

. . . AN . AN ra— A A A A
w 1s upper semi-continuous at Xxo, thatis, w(xo) > limg—» w(xr) forany xr e R",(k=0,1,2,...),Xr — Xo.

- W b=

[w]’ = (x e R" :w(x) > 0) is compact.

For, 0 <o <1 we denote [w]* ={x e R" :w(x) > a}.
Then from (1)—(4), it follows that the a-level sets [w]* e CC(R™). If g:R" xR" — R" 1s a function,
then by using Zadeh’s extension principle, we can extend g to E" x E" — E" by the equation

[g(w,v)(2)]= sup min{w(x),v(y);.

z=g(x,y)

It is already known that [g(w,v)]* = g([w]*,[v]*) Yw,ve E",0<a <1 and g is a continuous function.

Further, we have [w +v]* =[w]* +[v]*,[kw]* = k[w]* where w,ve E",keR,0<a <1.

Let A and B be two non-empty bounded subsets of R". The Hausdorff metric defines the distance
between A and B

H,(A,B) = max{supinf || a—0b|, supinf|a-b|}
B acA

acA beB be ,

where |- || denotes the usual Euclidean norm in R". Then, (CC(R"),H,) is a complete and separable
metric space [7].

2.8 Definition

The complete metric d_ on E" is defined by

d,(w,v) = sup H,([w]*,[v]*) = sup |w; —v",w} v} |

0<a<l 0<a<l
for any w,v,z € E", which satisfies H,(w + z,v+2) = H (w,v).

Hence, (E",d,) is a complete metric space [22].

2.4 Definition
The supremum metric H, on C(J,E") is defined by
H, (w,v) = sup d,(w(?),v(t))

0<t<T

Hence, (C(J,E"),H,) is a complete metric space [24].
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2.5 Definition
The derivative x'(f) of a fuzzy process x € E" is defined by

[x' O] =[(x]) @), (x)'@)]
provided that the equation defines a fuzzy set x'(t) e E" [24].

2.6 Definition
b
The fuzzy integral I x(t)dt, a,be[0,T] is defined by

[xwa] =|['eno. w0

provided that the Lebesgue integrals on the right-hand side exist [24].

2.7 Definition

A mapping f:J — E" is strongly measurable if, the set valued map f, :J - CC(R") defined by
f, @) =[f®)]" is Lebesgue measurable when CC(R") has the topology induced by the Hausdorff metric
[23].

2.8 Definition

A mapping f:J x E" — E" is called level wise continuous at a point (¢,,x,) €J x E" provided, for any
fixed o €[0,1] and arbitrary ¢ >0, there exists a 5(e,a)>0, such that H,([f(,x)]*,[f(t,,x,)]" <&)
whenever |t —t,|<6(e,a) and H,([x]*,[x,]") <6(e,a),VEieJ,x € E" [23].

2.9 Definition

A mapping f:J — E" is called level wise continuous at ¢, € J if the multivalued map £, (¢) =[f(¢)]* is
continuous at ¢ =¢, with respect to the Hausdorff metric for all a €[0,1] [23].

A map f:J — E" is said to be integrably bounded if there is an integrable function A(f), such that
|| x(t) |< h(t) for every x(t) € f,(t).
2.10 Definition

A strongly measurable and integrably bounded map f:J — E" is considered integrable over J, if
.[()Tf (t)dte E". If f:JJ — E" is strongly measurable and integrably bounded, then f is integrable [23].

2.11 Definition

A system is said to be controllable in E", if there exists an admissible control function u(¢) using which
it 1s possible to steer a system from any arbitrary state to desired final state.

2.12 Definition

The a-cut or o-level set of A is denoted by A or [A] and is defined as A” ={x e E" : A(x) >} for
o €(0,1].
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3. Controllability Results
3.1 Assumptions
Assume the following hypothesis.

H1. [16] C(t) is a fuzzy number satisfying e CY(J;E")nC(J;E")Vy e E". Since fuzzy integral

dC(t)y
dx
1s a fuzzy number so there exists a fuzzy number S(¢) € E" such as

dkz(t)y e C'(J:E")  C(J: E).
X

S(t)y = I;C(s) yds ,with satisfying

In the sense of a-level, [S(¥)]* =[S/ (¢),S; (¢)] = U;Cl“ (s)ds,J.Oth‘ (s)ds}, here C{(t),S ()@ =1r) are
continuous, that is, there exist two finite constants M, M, >0 such that |C,(¢)|< M,,|S;t)|< M,,
|[AC;(t)I<M,M>0,Vted =[0,T1].

H2. [1] The nonlinear function h:J x E" — E" is continuous and there exists a constant d; >0, satis-
fying the global Lipschitz condition, such that H,([h(t,x)]*,[h(¢, »)]*) < d H ,([x@®)]*,[y()]*); Vt e J and
x(t),y(t)e E".

H3. [1] If g is continuous and there exists constants G,,k=1,2,---, p, such that
H ([0, %, oo, YOI 800, 0y e, YT
<D GiHy([x, 1Ly, (9]%),Vs e[-r,0]
and all X, s Ve, € C({-r,0LE"),k=1,2,---,p.
H4. [16] There exists a non-negative d, and d,, such that
H, ([L, (@D L (@ D) < & H y ([ (O, [y(O]), k =1,2,---,m
where, Z:=1dk <D and
H (1, (@) [, (@) < d Hy ((xO1 [yOF ) k= 1,2, m

where, z;"zldk, <D
forall x,ye E" and tedJ.

H5. [1] The nonlinear function f: J xE" — E" is continuous and there exists a constant d, >0, satisfy-
ing the global Lipschitz condition, such that H,([f(¢,x,x")]*,[f(&, y, y)]*) <d,H ;([x(t),x' )], [¥(t), y'®)]7),
Vted and x(t),y(t) e E".

H6. 2[M, Y G, +d, +T(Md, + M,d,)] <1.

H7. The multi-valued map f:J xC([-r,0],E")x C([-r,0], E") — E" satisfies the following conditions:

e For each t e, the function f(t,.,.):J xC(-r,0],E")xC([-r,0],E") - E" is u.s.c. and for each
x € E", the function h(t,.):J x C([-r,0],E") — E" 1s measurable. Also, for each fixed x € Q the set
Sixwy =veL(J,E"):v(t) e f(t,x,x") fora.e. ted}+o.
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e For each positive number / € N, there exists a positive function w(l) dependent on / such that

Wpllf(t x,x")| <w(l)

()

and %nn inf —= =7 <o, Where”f(t X, % ))|| sup{”v” ve f(t,x,x"}, ||x|| = sup ||f(t xX,X ))||

o fis completely continuous.

3.2 Definition
[17] If x(z) is an integral solution of the problem (1.4), then x(?) is given by
x(t) = p(t), if ¢ € [~r,0]
x(t) = COIp0) - g(x, ,x,, peea¥e )O)]+S®[y, —hO,0)] +h(t,x,)
+[ AC(t - 9)h(s,x,)ds + [ S(t - 9)[o(s) + Bu(s)lds
+zo<tk<p(t —t )L x(t;) + zoqkqsa —t)Lx(t;)if ted;
and
x'(t) = AS®)p(0) - g(x, ,x, SR )(0)] + C(®) [y, — h(0,0)] + h(t,x,)
+ j;AS(t (s, x,)ds + j;C(t — s)u(s)ds + j;C(t — ) BW [z — C(m)[(0)

—g(xr1 LS ,pr )(0)] - S(m)[y, —h(0,9)] - J.:C(m - s)h(s,x,)ds
m (3.1)
_ IO S(m - s)v(s)ds — Zo<mk<m0(m —my,)Lx(m;)

Yy S =m) LN + Y, ASE 1))
+Zo<tk<tc(t — b, )I_kx(tlg), ifted

whereve S, ={vel'(J,E"):v(t)e f(t,x,x'(t)) forae. ted}.

fox,x

3.8 Definition

[7] The nonlocal problem (1.4) is said to be controllable on the interval o/ if there exists a control u(f),
such that the fuzzy solution x(¢) of (3.1) is controllable and satisfies

x[T]=x" i.e,[x(T)]* =[x']* where x' € E".
Before proving the controllability of system (1.4), we define the fuzzy mapping W from P(fR) to E"
by

. jS“(T syw(s)ds; wc T,

0; otherwise

where P(R) is the set of all closed compact control functions in R and fu is the closure of support u. In
[2], the support I, of a fuzzy number u is defined as a special case of the level set by I', = {x : 1, (x) > 0}.
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Then, there exists Wj“ (j =1,r),such that
= [8¢(T - ) Buy (s)ds,w,(5) € [ (), ()]
= [82T - 5)Bw, (s, (5) [} (5) 7 ),

We assume that Wl"‘ ,W,f" are bijective mappings. Now, the a-level set of u(s) is

[u(s)]" = [w" (s),u; ()]
= (W) (&) - CH(D)lgf (0) - gf (@ 32,5, )O)]

t
=S/ (M) [yg, — Iy (0,0)] = b/ (T, x7,) - IOA{" C/ (T - s)h (s,x5)ds
t
- josl“ (T - 8)uv (s)ds — ZM LCH(T =) s (&)

_Z(ktk <TSla (T - tk )I_klxl (tk ))7

W)y = CHDlgy O) - g7 (x, 12, o6, )O)]
- Sy — b 0,901 - 2 (T,x5,) - [ AZCE (T - )kt (5,45)ds
-[iSr @i )ds =Y, L CHT =)L, 6)
= Do oS T =0T, %7 1)

Substituting this in equation (3.1), we get an «a -level set of x(7) as

[x(T))* =
(G Do 0) - 87 Cx, x5, o x O]+ S (D) — by’ O, 9)] + ' (T x7,)

j A*CH(T - s)h? (s,x%)ds + j S*(T - s)v° (s)ds+z Co(T —t,)1,,x (t;)

e <
# e ST =T () + ST = ) () = G (D)o (0) - g7 (&, -1, )(O)
—SH(T) [y, — k¥ (0,0)] - A (T, x%)) — I;A,“ Co (T - s)h? (s,x%)ds — j;sla (T — s (s)ds
Do Gl T =t ) =3 ST (T =) L (),

(CF (D) (0) = 85 (3, 1%, oves, O+ ST, B .00 + b (T'5,)

+[ AZCH(T = )R (s, )ds + [ SE (T =)ot (s)ds

D ey aCPU T =)L 0 + 3 ST =), (7 4)

[ ST = )W) () = CED (0) - g1 (x, 1%, ., O]

~SE (D, — 0,0 - A (T,x5,) - [ AZCE(T — s)hi(s,x5 )ds

- jgsgx (T - s)v? (s)ds — Zmﬂc;x (T —t,) 1, x%(t) - ZM L SET =), 2 (t,)ds

= [ (e = [

(3.2)
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Hence, the fuzzy solution x(¢) for equation (3.1) satisfies [x(T)]* = [x']*. Now for each x(z) and t € J,
define

O(x(1) = CO[0) — g(x, ,x, S )O)]+S®) [y, —(O0,9)] + h(t,x,)
+[ AC( —$)h(s,2,)ds + [ St~ s)o(s)ds + > e, L~ 1T E)
+3 0o, SELEE)+ [ SE= )0 (@) - CDI9O) - 8((x, 5, %, O] (3.3)
=Sy, ~ hO,0)] - A(T,x7) - [ ACT = 9)hs,x,)ds — [ S(T - syu(s)ds
—ka O =)L) - ZO<%<TS(T —t,)1,x(t;)ds

where (W)™ satisfies the previous statements.
Observe ®(x(¢)) = [x'], which represents that the control u(t) steers the system (3.1) from the arbi-
trary stage to x' in time T, given that there must exist a fixed point of the nonlinear operator ®.
Similarly,

O(y() = COIPO) ~ 8(y, ¥, > B )O)]+ SO [y, —h(0,9)]+h(t,y,)

H[ACE-9)h(s,5)ds + [ SE-9u(eds+ Y _Clt-t)L,y(¢)

O<tk<t
00y ST + [ SE-H) (@) - CDpO) - 8, 3y 3. JOT (B.4)
=S(1)Ly, ~h(0.0)] - AT, 37) - | OT A(T = $)h(s, y,)ds — IOTS(T — $)u(s)ds

_20<tk<TC(T - tk)Ikx(t’;) - zo<tk <TS(T - tk)Iky(t}; )dS

The controllability of fuzzy solutions for the neutral impulsive functional differential equation with
nonlocal conditions is discussed in the following theorem.
Theorem: [7] Equation (3.4) is controllable if the hypothesis (H1-H®6) is satisfied.

Proof: For x,y e Q'
H ([P, [PYN]") = H,[ICO[$(0) - g(x, , X, 5=, x, WO+ SOy —(0,9)]+ A(2,x,)

+ j;AC(t—s)h(s,xS)dH jO’S(r—s)v(s)dH 3 Cl-1)Lx()+ Y S —t)Ix(E;)

O<t, <t O<t, <t

+[SE=$)07) () = CTIPO0) - g((x, %, >, NO) = STy, ~h(0,$)]~ h(T, x,)

- jOT A(T = $)h(s, x,)ds — jOT S(T=sy(s)yds— Y. C(T—1)Lx(t;) = S S(T—1,)Ix(r; )ds]*,

0<t; <T 0<t; <T

[COIPO) (3, e+ ¥, WO+ SOLyy —h(O )1+ ke, 3,) + || AC(=$)h(s, y,)ds + [ S(t=s)v(s)ds

+ 3 Ca—t)Ly )+ Y, SE—t)Ly )+ [ SE=s)07) ()= CTNPO0) - (3, . 3,,.+ ¥, JO)]

O<t, <t 0<t, <t

~ STy, ~h(O.9)] = h(T.y;) = || ACT = )h(s.y)ds~ [ ST =s)w(s)ds = > C(T~1)Ix(t;)

0<t, <T

- z ST —1)1,y(t,)ds]"]

0<t, <T
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= H(COI0) 8, %, %, YO +[SOLy, ~hO.HI + H,[hit, 21 +| [ ACE - )hts,x,)ds |
+[ [ S(t-s)u(s)ds]a +[ 3 C(t—tk)Ikx(tk)T +{ > ST -t )ds}
0<ty, <t 0<t, <T

H [156- 907 (@) - OO - 8, 3, %, )O) |- STy ~hO.P - AT, %)

- J‘OTA(T—s)h(s,xs)ds j S(T -sy(s)ds— D C(T -t,)Lxt;)— > ST —t,)Ix(t;,)ds]*,

0<t, <T 0<t, <T

[COWO - g3, 3., .2, YOI +[SOL, - OO + Hh(e.3)) +| [ ACE-9h(s.5,)ds |

a

+ [ZOQ C—t)L,y(, )T + {ZM ST =)Ly, )ds}
|18 -suds | +| [Sa-900) (@) - CD0) - 203, 7,25, YO
~S(T) Ly, ~h0.0)] - (T, yp)], AT ~$)h(s,y,)ds~ [ S(T-s)u(s)ds
_ Zo<tk<TC(T ~t, )L x(ty) — ZO<%<TS(T ~t,)1, y(tk)ds}a J

= H,(ICO8(x, ., %, JOI[CO, 3,3, JOI)

+ H ([0t x )1 TR, y)1) + H, ([ [ace- s)h(s,xs)dsT [ [[ac-sns, ys)dsm

1 H, _'[;S(t - s)v(s)ds}a [ [ise- s)v(s)dsT }

+H, _20<t <tC(t b, x(tk)} ’|:Zo<t <tC(t tk)Iky(tk):l J

+H, Zo<t <tS(t t}’)Iky(tk):| ’I:Z()q <tS(t tk)Iky(tk)} }

+Hd (J.;Sla (t- S)BVf/la )—l [(xl) _ C(T)[(p(O) _ g(xr1 ’xfz ,...,xrp )(0)]

~S(T) Ly, ~hO.0)] - (T, %) - [ ACT - 9)h(s, x,)ds [ S(T - s)u(s)ds

- ZO<%<TC(T —t)x(t,) - Zo<tk<TS(T —t, )I_kx(tk)} (s)ds, j;s;? (t - s)B(W*) '[(x")
l

~C(DeO - glx, x, .2, O] =Sy, ~h(0,9)] - (T, x7)

T T -
- jo A(T - 8)h(s,x,)ds — jo ST —sy(s)ds—Y.  _ C(T ~t,)Lx(t;)

0<tk<T

ey ST L)L (s, { [ =90 ~DIx") - CT)p(0)

—g(3, 3,9, YO =Sy ~hO.0)] - AT, 3y) ~ [ ACT = 5)h(s, ,)ds
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- IOTS(T —s)u(s)ds — zo<tk<TC(T ) y(t,) - Zo<tk<TS(T —t )T, y(t;)]% (s)ds,
I;Sf (t = )W) [(x") - C(T)[(0) - 8z Yeyr e 3 JON =Sy =10, 9)] = (T, y7)
_ IOTA(T —s)h(s,y,)ds - J-OTS(T — s)u(s)ds — ka SO —t)Ly(@,) - zo<tk<TS(T —t) Lyt (s)ds])

< H,((CO; & (x, %)%, JOLUCE) & (x, %, %, )O)
(CQ); 8 (3, 3ryo-ws3: JOLICON; &5 (3, 3oy 3. JOD

+H,([hy (&, 2), 1y @ x,)], [y @ v), 0 (2, 90D

+H, { j ACE (t — s)h (s,x%)ds, j A*CE (t — s)h% (s, )ds}

UOAZ“ Cf (t — s)h(s, y5)ds, IoAf G (t = s)h(s, yZ,)ds}
+H, [ jotSf‘ (t — sy (S)ds}, { j(js:f (t —s)v” (s)ds} : U;Sl“ (t — s)vy (s)ds} : [ jots,a (t - s)u° (s)ds}
+H, {ZO O ), 3 Crt=4T x(tk)}

[Zoq B GALAICY I e tk)IZry(tk)}
+H, [ZM S -4, x(t), Zoq S-t)I, x(tk)}

{Zoq S t)L, vt ZN SHe- ), y(tk)}

H, (W) W) (&) - C(T)[p(0) gl s, sy, YO =Sy —h(0,0)] = (T, x7)

S(T —tk)zx(tk)} ,
1

_ IOTA(T — 8)h(s,x,)ds — IOTS(T —s(s)ds - C(T-t)Lx(t;) - Y.

0<tk <T 0<t <T

(W) (@) = CDp(0) - gl ,x, o+, YO = STy = hO,0)] = (T, xp)

S(T—tkﬁx(t;)}

- J‘OTA(T —s)h(s,x,)ds — jOTS(T —s(s)ds-Y _ C(T-t,)Lxt)-Y.

0<t <T 0<t <T

(W) W) (=) = C(T)[p(0) - 82y e WO =Sy = AO,@)] = (T, )

a

- J.OTA(T—s)h(s, ¥, )ds ~ jOTS(T—s)U(s)ds—Z C(T -t,)L,y(t,) - ), S(T—tk)fky(t,;)}

Ot <T 0<t <T

l

(WP 1) = CD9O) = 8(y, 3, o3 YO = STy = b0, )] = (T, 1)
- J‘OTA(T —s)h(s,y,)ds — J‘OTS(T —s)u(s)ds — Z(mk O =)L y(t,) - ZO<%<TS(T —t)1, y(t,;)}

<2M,» " G.H a(lx,, OF, Ly, (OF) +2(d)Hy(lx@))", [y®]*) + Md, j;H ([, [y )ds

+M,d, [ H (xOF LyOF )ds + Md, [ H (@) [y )ds + Myd, [ H,(xOF [yOF ds
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Therefore,
d.(@x(8), 0y(1) = H,((0x O] [0y®O1) < Y7 Gud, (%, 3, ) +2(d)d, (x(®), ()
+Md, [ d, (x(5), y(s))ds + Myd, ['d., (x(s), Y(s))dls + Md, jfdw (6(5), ¥(9)ds + Myd, [ d, (x(5), y(s))ds

Hence, H,(®(x), D(y)) = sup d,(D(x(2)), D(¥()))

0<t<T

P
<2M,) G, sup d,(x, .y, )+2d,) sup d., (x(t), y(®)

= 0<t<T <t<T

+ Md, sup I; d,(x(s),y(s))ds + M,d, (;sup J.; d, (x(s),y(s))ds

0<t<T <t<T

k=1

= {ZMlin +2(d,) + 2T (Md, + Mzdz)} H,(x,9).

By condition (H6), ® is a contraction mapping. Using the Banach fixed point theorem, equation
(3.3) has a unique fixed point x € Q'. Hence the System (1.4) is controllable on J.
Similarly, we proceed for x',

()" =[uf' (), (s)]
= (W) [x' - G (D)lof (0) - g7 (x, 0, -0, )OO =87 (1) by’ (0, 0)]

Cr(T -t )1,x,)

0<t, <T

[T - 9)hi (s, x5)ds = [ SPT — sy ()ds =Y. k

=Y e o SE T =) T NS, (7 ' = € (D! 0) = g7 (v, o, (O (3-5)

_S%(T)[y?, —he (0,0)] - j;c;? (T — $)h™ (s,x%)ds - jots;* (T - s)u (s)ds

—Zoqk LCHT =) 1,27 () - ZMNS? (T —t,)1,,x",)](s)ds
Substituting this in equation (3.1), we get an a -level set of x'(T) as
(D))= A7S (Dl O) - g/ (. x, oox YOI+ Gy = by (0,0)] + by’ (T, x7,)
t t
+I0Af S} (T —s)h) (s,x3)ds + IOCZ‘" (T - s)v(s)ds + ZO<tk LANSH (T =t )Ty x(t)
T o4 e 7o\~ a a a
+Zo<tk<TCl“ (T -t)Lx(@t,) + .[oCl (T -s)BW ) ' [x' - C7 (D[} (0) - g; (@ 520,50, )O)]
t t
=S (T)[yy, —h (0,9)] - IOCf (T —s)h/" (s,x5)ds — J-OSZ"‘ (T - s)v} (s)ds
—20<tk<Tc;x (T —t, ), x%(t;) - 20<tk SET =) Ly (6)](s)ds,

A5 Dy 0) =8, Cx, x onsx O]+ CHDILyo, —hy (0,0)]+ b (T x7,)

t t
+ ATSE(T = 9hf (s,25)ds + [ CH(T = syo(e)ds + Y ATSHT ~4,)1,x5 (1)

0<t),<T roer
+3 ey O T =)D (2 )+ [ CHT =) ) (@) = C (Dl (0) =g (x5, -1, O]
_SE(T)[y% —he (0,0)] - jotc;l (T - s)h" (s,x%)ds - j;s:f (T - s)uf (s)ds
—z Cr(T -t )1,x; (t;)—z SUT —t)I, 7 (t)1(ds) = [(ah)¢, (2] = [«]".

r r
0<tk <T 0<tk <T
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Hence, the fuzzy solution x(¢) for equation (3.1) satisfies [x'(T)]* =[x']*. Now for each x'(t) and t € oJ.
define

') = ASW[e(0) — 8(x, a2, )OI+ COLy —hl0,0)] +h(t,x,)

+j;AS(t (s, x,)ds + I;C(t —su(s)ds+ Y AS(E-t,)x(t;)

O<tk <t

#0y LO 1T + [ = 9B () = Cm) [p(0)
n (3.6)
~g(x, %, %, )= Sy, - hO,0)] - [ Cim = 5)h(s,x,)ds
C(im—-my)I,x(m,)

[I'Sm-9usds -3,
=2 e, en S =) s

where (Vf/)_1 satisfies the Equation (3.5).
Observe ®(x(t)) =[x'], which represents that the control u(f) steers the system (3.1) from the arbi-
trary stage to x!' in time T, given that there must exist a fixed point of the nonlinear operator ®.
Similarly,

(y'®) = ASOLP0) - 8, ¥:, 5 . NOI+COL, —h(0,0)] +h(E, 5,)

[ AS(t-9h(s,5,)ds + [ Ct-9u(sds + Y _ASE-t)Ly(E)

o<ty <t
#2ey LU- )T + [ O =) BOD) () - Cm)[p(0) - &5, 3., ., JO)]
-S(m)[y, ~h(0,9)] - | Clm —9)h(s,y,)ds ~ [ 'Sm ~ s)(s)ds
=2 gy O =ML (m) =D S(m=my) ], y(m)lds
For x',y' € Y,
H ([0 O] [@(y'O)) = [[AS®[e(0) — g(x, ,x, SR )O)]+ C@O)[y, — O, 0)] + h(t,x,)
+[ AS(t - 9)h(s,x,)ds + [ C(t —9)u(s)ds + > e, ASC-1)Lx()
+00 L 1TEG) + [ €= 9B (@) = Cm)[p(0) - (-, O]
=S(m)[y, ~h(0,0)] - [ "Clm = 9)h(s,x,)ds - [ 'Sm = s)v(s)ds
D O =m)LEm) =3 S(m—m) Lx(m, ))ds]* [AS@Ip(0) - 80y, ., .3, O
+COLY, —h(O,0)] +h(t, ) + [ ASE-9)h(s,3,)ds + [ Ct - s)()ds
e ASE=tILYE) + Y, Ot~ t ) y(t)
+[[CE -9 BOVY 1) = Comp©) =gy, 13,53, O] = S(m)[y, ~h(0,0)
—jo'"C(m — $)h(s,,)ds — jOmS(m ~s)(s)ds—

Dy en S0P = ym)Nds]" )

Cim—-my)I,x(m;)

0<mk <m
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Proceeding in the similar fashion as in x(t), we get,

d,.(Dx'(2), ®y'(t)) = sup H,([®x'®)]", [Py (?)]*)

0<a<1

<[(M; + M2)z::1Gk +(1+M))d, + T(3M,d, + 2M,d, + M,d,)|H,(x,y).

4. Example

In this section, we apply the results proved in the previous section to study the controllability of the
following partial differential equation:

x,(t,z) = [2x(t,2)]., +u(t,2) + 2tx(t,2)”
Ax(t,) =Ix(t,),t#t,k=1,2---,m
Ax'(t,) =T x(t;),t #t,, (4.1)

p
x(0)+ Y ¢x(t,) =0eE",x'(0)=0
k=1

The a-level set of number 0 is given by, [0]* =[a —1,1 - «]; for all & €[0,1].
And the a-level set of number 2 is given by, [2]* =[1+ «,3 - «]; for all a €[0,1].
Now, the a-level set of [f(t,xt)]“z[étx(t,z)Z]“ =t[1+a,3-a][(x](2),(x*(,2))"]

= [(1+a)t(xf (2,2)),(3 — )t (' (2,2))° ],
where [x(£,2)]" = [x] (¢,2),x7 (t,2)].
Further, H,([f(¢,x)]", [/ y)]")
= H,([(1+ a)t(x (8,2)), (3 = a)t(axy (2, 2)° 1, [(1 + adt (o7 (2,2))*,(8 = a)t(y7 (£,2))°])
= max((1+a)t | (x (t,2))” = (3] (£,2))* |,B =)t | (x} (t,2))* = (7 (¢,2))° |)
< (8-a)Tmax(|x{(t,2) = ¥ (1,2 1x0(6,2) + 5 (1,2 || x5(6,2) = ¥ (L) | 1x5(6,2) + 3 2) )
< (BT 1x%(8,2) + 3¢ (6,2) DH,([x(t, 2)] [x(, )
=K H,([x(t,2)]",[y(¢,2)]),
where K, = (3T | x; (t,z) + y/ (t,2) |) satisfies the inequality which is given in condition (H5).
Let the target state be 2. Now, from the definition of fuzzy solution
x; () =C/(t) (a 1) - z kx(tk +S M) —1]+S7 (t - s)[(1 + a)s(x) (¢,2))*ds

j S (t - s)uf (s)ds + ZN Gl =)L () + ZN S =) Tuxy k),

x%(t) = C(t) (1 —a)- Zkzlckx(tk) +8%[1—a] + S“(t - s)[(3 — a)t(x” (t,2))*]ds
j SE(t—su ()ds+, _ . Cr=t)L,xf )+ . SEt =) T,xf (),

Now the a-level set of u(s) is [u(s)]” =[u; (s),u; (s)]
where
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uf (s)= (W) (A +a) - CF (D@ -1) - D) x-S (Tl -1]
[ SP(T - 9+ @)s(a (¢,2)1ds - Y.

I GEATEAIO!

Cr (T -t )1,x] ()

0<t <T

and
u () = (W) (3 -a) - C (D)l ~1) - 37_e,x(t)1 - SE (D1 -]
[ SHT - 9B - s ¢,2)1ds - .

_ZOQ <TS'(“X (T tf’)I}’r r (tk ))(S)

Cr(T-t,)1,x; ()

0<t;, <r T

Then the a-level set of x(T') is given by,

[T =[x (T),x} (D] = (C{ (D -V =Y . _ex)]+ S (T)la-1]

0<t <T
j SH(T — 9 +a)t(xf ¢, 2)*ds+ > CHT —t,)Lxf (&)

+Zo<tk<TSl°’ (T =) i () + W) W) (1 + @) = G (D[ 1)

OtT

Y )] - S7 (D)o ~11 - [ S7(T = 9)[(1+ a)s(f (1,2))1ds

Dy aCF T =t ) =2 ST (T =) Ly (),

CcrMl-a)- Z ckx(tk +SI(T)[1-al+ S (T -s)[(3—a)t(x) (t,2))*]ds
j S*(T - s)u’(s)ds + ZN O 1)L, x%(t,)

# e ST =)L )+ (W) (3= 0) = G DI - )

Y )] - Sy -al - [SE(T - 9)[(3 - a)t(xf (¢,2)*1ds

1

_zo<z <TC'?(T b1, () ~ ZOq TS;Z(T tk)I}»r 2 (@),
=[1+a,3-a]=[2]" =[x']"

Hence, the fuzzy solution x(¢) for equation (3.1) satisfies [x(T)]* =[x']*. Thus all the conditions
stated in Theorem 3.1 are satisfied. So the system (4.1) is controllable on J.

5. Application

Consider a coil spring suspended from the ceiling with 8-1b weight placed upon the lower end of the
spring. Stretching the spring 3 ft from its equilibrium position and then pulled down the weight

111

about —ft [i.e. (g 1'% %;1) ft] below its equilibrium position and released at ¢t = 0 with initial velocity
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ET

pos ition 2-1b

8-Ib

Figure 1: Represents the coil spring-suspended with 8-1b mass

1 ft/sec [i.e.(%,1,2,g) ft] directed downward. Neglecting the resistance of the medium and assuming

no external forces are applied.
Solution: Using Hooke’s law F = KS, which gives 8 = K% and so k=16lb/ ft. Also, m = 3%

d’x(t) _ _
a o005y

The solution when x(¢) is (i)-gH(Generalized Hukuhara) differentiable and % is (i1)-gH differen-

L1139 and x'<0>=<§,1,2,§>

The differential equation is

tiable or, x(¢) is (i1)-gH differentiable and da;it) is (1)-gH differentiable then we have
2
%:—64%(“9,@,% e[-2,0] (5.1)
2
% = —64x,(t+0,a),¥0 e[-1,0] (5.2)
with, x, (0,0) = l1+a x,0,0) = 3-a 7dx1(0,oc) _l+a and dx,(0,a) _b-a
4 dt 2 dt 2
Solving, we get
x,(t,a) = 1 +2a cos8(t +0) + %sin&t +0) and
x,(t,a) = 7-3a cos8(t +0) + 17-5a sin8(t +0)
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Table for the solution at t = 1.05, f=-1

o X1 X2
o 0.065291126  0.408360587
0.1 0.071820238 0.393640978
0.2 0.078349351 0.37892137
0.3 0.084878463 0.364201762
0.4 0.091407576  0.349482153
0.5 0.097936688 0.334762545
0.6 0.104465801 0.320042936
0.7 0110994914 0.305323328
0.8 0117524026  0.290603719
0.9 0124053139 0.275884111
1 0.130582251 0.261164503

09—

08

07—

06—

05—

04

0.3

02

0.05 0.1 0.15 02 0.25 0.3 0.35 0.4 0.45
t—

Figure 2: Represents the graphical solution

From the graph, we conclude that as x, increases x, is decreasing function. Hence, the solution is a
strong solution.

6. Conclusions

In this paper, we have proved the controllability of the fuzzy solutions for the second-order impulsive
neutral functional differential equation by applying the contraction mapping principle. Further, we
can extend the controllability results for the fuzzy inclusions. The numerical solution of the system
is also useful for the study of a real-life phenomenon. For instance, we can consider a real-life phe-
nomenon of a friction pendulum bearing specially designed for base isolators used in many heavy
structures like bridges, buildings, towers, etc. to reduce the impact of earthquakes. Using the above
system, we can also find critical points where the structure becomes unstable or gets damaged.
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