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Abstract
In this manuscript, we initiate the concepts of domination in bipolar picture fuzzy graphs (BPPFGs) 
based on the strong edges. Basically, it is the generalization of both the dominations in bipolar fuzzy 
graphs (BPFGs) and picture fuzzy graphs (PFGs). In the beginning, we introduce different terms 
related to the domination of bipolar picture fuzzy graphs (BPPFGs) like vertex cardinality, edge car-
dinality, strong edge, neighbors, strong neighbor of vertex, private neighborhood, independent sets, 
dominating sets etc. After this, we provide some important characterizations of domination in bipolar 
picture fuzzy graphs (BPPFGs) based on minimal dominating sets and maximal independent sets. 
We also investigate the lower and upper domination numbers of these graphs. Moreover, we discuss 
the notion of the total domination of bipolar picture fuzzy graphs (BPPFGs) and present few of its 
properties. In our study, we include the terms status and structurally equivalent of bipolar picture 
fuzzy graphs (BPPFGs). Finally, we present the application of the domination in bipolar picture fuzzy 
graphs towards social networking.
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1. Introduction

In 1965, Zadeh initiated the concepts of fuzzy sets (FSs) [1]. After this, many generalizations of the 
fuzzy sets (FSs) have been explored in the literature. interval-valued fuzzy set (IVFS) was the first 
generalization of the FSs introduced by Zadeh [2]. Subsequently, Intuitionistic fuzzy sets (IFSs), 
bipolar fuzzy sets (BPFs), picture fuzzy sets (PFSs) are another generalizations of FSs explored in 
the literature. Bipolar fuzzy sets (BPFSs) was first introduced in [3]. In BPFSs, the membership 
values were restricted in the interval [–1, 1]. Different types of relations were studied on BPFSs 
in [4]. Further extension of BPFSs named bipolar pythagorean fuzzy sets was introduced in [5]. 
Afterwards, the term BPFSs was shifted towards soft sets theory and the term bipolar fuzzy soft set 
was  introduced in [6]. Atanassov [7] introduced the new type of the FSs termed intuitionistic fuzzy 
sets (IFSs). In IFSs, the positive and negative memberships were considered. Recently, B. C. Cuong [8] 
introduced the most extended form of the FSs named picture fuzzy sets (PFSs). In PFSs, three mem-
bership values were assigned to any entity which were neutral, positive and negative. C. Bo et al. [9]  
explored new types of operations and relations on PFSs. Different types of fuzzy logical operators 
towards PFSs were discussed by B. C. Cuong et al. [10]. Recently, the combination of both the BPFSs 
and PFS termed bipolar picture fuzzy sets (BPPFSs) and relations along with their applications have 
been introduced by the first and the third authors (with Faiz) [11]. 

On the other hand, Rosenfeld shifted the classical graphs theory towards fuzzy sets theory. He 
introduced the term fuzzy graphs (FGs) in [14]. FGs found more flexible and effective compared to that 
of the classical graphs. Due to its flexibility, numerous applications of FGs were explored in the liter-
ature. Bhattacharya introduced several new terms in the theory of FGs [15]. Several operations were 
defined and applied to FGs in [16]. The term complement of FGs was investigated in [17]. The term 
average connectivity of the classical graphs has been shifted towards fuzzy graphs by Poulik et al. 
[18]. An extension of the FGs named interval-valued fuzzy graphs (IVFGs) was introduced in [19]. 
Another generalization of the FGs termed intuitionistic fuzzy graphs (IFGs) was addressed in [20]. 
Different new operations on IFGs were explored in [21]. The notion of the complex intuitionistic fuzzy 
graphs along with their applications in cellular networking theory were explored in [22]. Similarly, 
another important generalization of FGs termed bipolar fuzzy graphs (BPFGs) was introduced by M. 
Akram in [23]. He also explored many fascinating characteristics of these graphs. However, different 
types of BPFGs were discussed in [24]. Regular-BPFGs was introduced in [25]. Similarly, the term 
m-polar fuzzy graphs was discussed in [26]. Furthermore, some applications of strong arcs in m-polar 
fuzzy graphs were discussed in [27]. Sequently, in 2022 Poulik and Ghorai [28] introduced the notions 
of perfectly regular BPFGs and perfectly edge-regular BPFGs. They also provided the worthwhile 
applications of these terms towards communication systems and decision making theory. The con-
cepts of the picture fuzzy graphs (PFGs) was first introduced in [29]. Several operations were defined 
and applied to PFGs and applications towards social networking were also explored. The extension of 
PFGs termed picture fuzzy multi-graphs (PFMGs) was introduced in [30]. Subsequently, the term reg-
ular picture fuzzy graphs (RPFGs) was initiated in [31]. Recently, we (the first and third authors with 
Faiz) have also initiated the terms Cayley picture fuzzy graphs [32] and interval-valued picture fuzzy 
graphs (IVPFGs) [33]. The first and the third authors (with Ali) discussed the concepts of the bipolar 
picture fuzzy graphs (BPPFGs) [34] which was the extended form of both the BPFGs and PFGs. Chen 
et al. [12] introduced the concepts of picture fuzzy line graphs. Arif et al. [13] introduced the notion of 
picture (S, T)-fuzzy graphs and its applications towards MADM.

Domination in FGs based on effective edges was introduced in [35]. Afterwards, Nagoorgani 
et al. [36] discussed the term domination in FGs based on strong arcs. Domination in directed fuzzy 
graphs was investigated in [37]. Most recently, the terms broadcasts and dominating broadcasts in 
FGs were discussed in [38]. They also presented the application of these terms towards transpor-
tation model. Further to this, the concepts of the total efficient domination was introduced in [39]. 
The concepts of the domination in BPFGs were introduced in [40]. Gong et al. [41] introduced the 
domination in BPFGs in some different ways. Subsequently, domination in BPFGs was further inves-
tigated in [42]. They also investigated the fuzzy network connectivity in the setting of BPFGs. The 
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domination in PFGs was discussed in [43]. More generalized form of domination termed paired dom-
ination, strong paired domination in PFGs were introduced in [44].

In this manuscript, we initiate the concepts of dominations in bipolar picture fuzzy graphs (BPPFGs) 
based on strong edges. This is the generalized form of both the domination in BPFGs and PFGs. 
In section 3, firstly we define few useful terminologies related to domination in BPPFGs such as 
edge cardinality, vertex cardinality, neighbors, private neighbors and strong neighbor of vertex etc of 
BPPFGs. Then, by considering the minimal dominating set and maximal independent set, we investi-
gate some important characterizations of BPPFGs. During this study, we also add the terms the lower 
domination and upper domination numbers in BPPFGs. The concept of the status, total dominating 
set and total domination number of BPPFGs are also introduced in the setting of BPPFGs. Finally, we 
present the application of the domination in BPPFGs towards social networking.

2. Preliminaries

In this section, we review some useful terms related to FSs and FGs from the literature. However, we 
refer [45] for the basics of the classical graphs theory.

Definition 2.1: [1] A fuzzy set (FS) T on a nonempty set U is described by

T u u u U u= {( , ( )) : , ( ) [0,1]}� �� �

Definition 2.2: [3] A bipolar fuzzy set (BPFS) T on a nonempty set U is given by 
 T w w w w U= {( , ( ), ( )) : }� �� � � , where �� �: [0,1]U  and �� � �: [ 1,0]U  are the mappings.

Definition 2.3: [8] A PFS T on U is the collection T u u u u u UT T T= {( , ( ), ( ), ( )) : }� � � � , where � �T Tu u( ), ( ) 
and τT u( ) are lying in the interval [0, 1] and represent the positive, neutral and negative membership 
degrees of u in T, respectively with � � �T T Tu u u( ) ( ) ( ) 1� � � , for all u U∈ .

Definition 2.4: [14] A fuzzy graph (FG) is a pair G* = (C, D), where C C= { }ρ  and D D= { }ρ  such that 
�C V: [0,1]�  and �D V V: [0,1]� � . We have � � �D C Cx w w x( , ) ( ) ( ).� �

Definition 2.5: [14] A FG H C D= ( , )* *  is said to be a fuzzy subgraph of G*, if � �*( ) ( )w w� , for all 
w C∈ , � �*( , ) ( , )w z w z� , for all w z C, ∈ .

Definition 2.6: [23] A BPFG is a pair G* = (C, D), where C C C= { , }� �� �  and D D D= { , }� �� � , where 
�C W� �: [0,1], �C W� � �: [ 1,0], �D W� �: [0,1] and �D W� � �: [ 1,0], is said be a BPFG of underlying 
set W, if � � �D C Cw z w z� � ��( , ) ( ) ( )min( , ) and � � �D C Cw z w z� � ��( , ) ( ) ( )min( , ), for all w z D C C, =� � .

Definition 2.7: [29] A pair G = (C, D) is called a PFG on G* = (C, D), where C C C C� ( ,� � �, )  is a PFS 
on V and D D D D� ( ,� � �, ) is a PFS on D V C� �  with

� � �

� � �

�

D C C

D C C

D

w z min w z
w z min w z
w z ma

( , ) ( ( ), ( ))
( , ) ( ( ), ( ))
( , )

�

�

� xx w zC C( ( ), ( ))� �

Definition 2.8: [29] A sequence of different vertices w w w wn0 1 2, , ,...,  in a PFG G* = (C, D) is a path p 
such that ( ( , ) ( , ) ( , )) > 01 1 1� � �D i i D i i B i iw w w w w w� � � , i n=1,2,..., , where n is the length of the path.

Definition 2.9: [29] If two vertices w and z of a PFG G* = (C, D) are connected through the path of 
length n as p w w w w wn n: , , ,... ,0 1 2 1− , then � �D Dw z w z( , ), ( , ) and τD w z( , ) can be described as

� � � �

� �
D D k n

D

w z min w w w w w w
w z min
( , ) = ( ( , ), ( , ),... ( , ))
( , ) = (

0 1 1 2 1�

DD k n

D D

w w w w w w
w z max w w w

( , ), ( , ),... ( , ))
( , ) = ( ( , ), (

0 1 1 2 1

0 1

� �

� � �
�

11 2 1, ),... ( , )).w w wk n� �
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Definition 2.10: [29] Let ( ) ( , )),( ) ( , ))� �D Dw z w z� �  and ( ) ( , ))�D w z�  be the strength of connectedness 
between the two nodes w and z of a PFG G*. Then ( ) ( , )),( ) ( , ))� �D Dw z w z� �  and ( ) ( , ))�D w z�  are defined 
as follows.

( ) ( , )) = ( ( , ) : =1,2,3....,
( ) ( , )) = ( (
� �

� �
D D

i

D D
i

w z max w z i n
w z max

�

� ww z i n
w z min w z i nD D

i

, ) : =1,2,3....,
( ) ( , )) = ( ( , ) : =1,2,3....,� ��

Definition 2.11: [35] Let G* = (C, D) be a FG of a crisp graph G and w z C, ∈ . We say w dominates 
z in G* , if � � �( ) = ( ) ( )wz w z� . A subset C1 of C is the dominating set (DS) in G*, if for each w C∈ 1 
there is z V C� � 1 such that w dominates z. A dominating set C1 of a FG G* is a minimal dominating 
set (MDS), if there is no any proper subset of C1 which is a dominating set (DS) of G*. The minimum 
(fuzzy) cardinality of a dominating set (DS) in G* is the domination number (DN) of G*.

Definition 2.12: [35] If G* be any FG not containing any isolated vertex, then the subset C1 of a DS 
C is called a total dominating set (TDS), if every vertex lying in C is dominated by a vertex in C1. The 
minimum fuzzy cardinality of a total dominating set (TDS) is a total domination number (TDN) of G*.

Definition 2.13: [29] Two vertices w and z are said to be neighbors in a FG, if ρ( , ) > 0w z , and N(w) 
represents the set of all neighbors of w. Also, if the arc (w, z) is strong, then w is a strong neighbor 
(SNs). The collection of all the strong neighbors (SNs) of w is called a strong neighborhood (SNbhd) of 
w, and is abbreviated as N ws( ) . The closed strong neighborhood (CSNHd) is N w N w ws s[ ] = ( )∪ .

Definition 2.14: [43] An arc (w, s) in a PFG G = (C, D) is called a strong arc, if � �D Dw z w z( , ) ( ) ( , )� � , 
� �D Dw z w z( , ) ( ) ( , )� �  and � �D Dw z w z( , ) ( ) ( , )� � .

Definition 2.15: [43] A subset C1 of C in a PFG is said to be a DS, if for each vertex w C C� � 1 there 
is the vertex z C∈ 1  such that z dominates w. A DS C1 of a PFG G = (C, D) is a MDS, if for each vertex 
w C C C� �1 1,  is not a DS of G*. The minimum cardinality among all DSs in G* is the DN of G*, abbre-
viated as ∇G

* .

Definition 2.16: [11] A bipolar picture fuzzy set (BPPFS) on a nonempty set V is the collection 
S u uP= { , ( ),ρ  ρN u( ), ϕP u( ), ϕN u( ), τ P u( ), � N u u V( ) : }� , where �P V: [0,1]� , �N V: [ 1,0]� � ,  
�P V: [0,1]� , �N V: [ 1,0]� � , � P V: [0,1]�  and � N X: [ 1,0]� �  are the mappings with 
0 ( ) ( ) ( ) 1� � � �� � �P P Pu u u , � � � � �1 ( ) ( ) ( ) 0� � �N N Nu u u .

Following [11], for each u V∈ , ρP u( ) represents the positive membership degree, ϕP u( )  for the 
positive non-membership degree and τ P u( ) for the positive neutral degree. On the other hand, ρN u( )  
denotes the negative membership degree, ϕN u( )  is the negative non-membership degree and τ N u( ) 
is a negative neutral degree. Alternatively, if �P u( ) 0�  (resp., �N u( ) 0� , � P u( ) 0� ) while all the 
rest of the mappings are mapped to zero, then u has only a positive membership property (resp., 
negative membership property, positive neutral property) of the BPPFS. An element u has only the 
negative neutral property of a BPPFS if � N u( ) 0�  and the other maps are mapped to zero. Similarly, 
if �P u( ) 0�  and all of the other mapping matched to zero, then u has a positive nonmembership prop-
erty of a BPPFS. Finally, if all of the other mappings matched to zero except �N u( ) 0� , then we say 
that u has a negative nonmembership property in a BPPFS.

Definition 2.17: [34] A pair G* = (C, D) is said to be a BPPFG on G = (V, E), where C C C C C C C= { , , , , , }� � � � � �� � � � � �  
is a BPPFS on V and D D D D D D D= { , , , , , }� � � � � �� � � � � �  is a bipolar picture fuzzy set (BPPFS) on E V V� �  
such that for every edge uv E∈ ,

� � �

� � �
D C C

D C C

u v min u v
u v max u v

� � �

� � �

�

�

( , ) ( ( ), ( ))
( , ) ( ( ), ( ))
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� � �

� � �

�

D C C

D C C

D

u v min u v
u v max u v

� � �

� � �

�

�

�

( , ) ( ( ), ( ))
( , ) ( ( ), ( ))
(uu v max u v
u v min u v

C C

D C C

, ) ( ( ), ( ))
( , ) (, ( ),, ( ))

�

�

� �

� � �

� �

� � �

satisfying

0 ( ) ( ) ( )( ) 1
1 ( ) ( ) ( )
� � � �

� � � � �

� � �

� � �

� � �

� � �
D D D

D D D

uv uv uv uv
uv uv uv 00.

We refer [40] for useful terminologies related to dominations in BPFGs. For more on domination in 
PFGs, one may consult [43, 44].

3. Dominations in Bipolar Picture Fuzzy Graphs

Recently, we (the first and the third authors (with Faiz)) have introduced the notions of the bipolar pic-
ture fuzzy sets (BPPFSs) [11]. We (the first and the third authors (with Ali)) have also been explored 
the concepts of the bipolar picture fuzzy graphs (BPPFGs) in [34]. In this section, we introduce the 
dominations and total dominations in BPPFGs. We also present the concepts of minimal dominating, 
total dominating sets etc along with few of their important relationships. The terms status and struc-
turally equivalent are also discussed in the setting of BPPFGs.

Definition 3.1: A vertex cardinality or the order of a BPPFG G* = (C, D) denoted by O (G*) = (O+ (G*),  
O G−( ))*  can be defined as O G v v v

v V C C C
�

�
� � ��( ) = ( ( ), ( ), ( ))* � � �  and O G v v v

v V C C C
�

�
� � ��( *) ( ( ), ( ), ( ))� � � .

Definition 3.2: The edge cardinality or the size of a BPPFG G* = (C, D) is denoted by S(G*) =  
( ( ), ( ))* *S G S G� �  and is defined as S G uv uv uv

uv E C C C
�

�
� � ��( ) = ( ( ), ( ), ( ))* � � �  and S G uv

uv E C
�

�
��( ) = ( ( ),* �

� �C Cuv uv� �( ), ( )) .

Example 3.3: The vertex cardinality or the size of the BPPFG shown in Figure 1(b) is 
O G O G O G( ) = ( ( ), ( )) = ((1.4,1.4,1.1),( 0.9, 0.9, 1.0))* * *� � � � � . Similarly, the edge cardinality of BPPFG 
shown in Figure 1(b) is S G S G S G( ) = ( ( ), ( )) = ((0.8,0.36,1.6),( 0.26, 0.75, 1.2))* * *� � � � � .

Figure 1: Bipolar Picture Fuzzy Graphs
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Definition 3.4: A path p in a BPPFG, G* = (C, D) is a sequence of different vertices w w w wn0 1 2, , ,...,  such 
that ( ( , ), ( , ), ( , )) > 01 1 1� � �D i i D i i D i iw w w w w w�

�
�

�
�

�  and ( ( , , ( , ), ( , )) < 01 ) 1 1� � �D i i D i i D i iw w w w w w�
�

�
�

�
� , i n=1,2,..., . 

Where n is the length of the path.

Definition 3.5: If any two nodes w and z are connected through the path of length n in a BPPFG G* 
= (C, D) such as p w w w w wn n: , , ,... ,0 1 2 1− , then � �D Dw z w z� �( , ), ( , ), �D w z� ( , ) � �D Dw z w z� �( , ), ( , ) and �D w z� ( , ) 
can be described as

� � � �

�
D D k n

D

w z min w w w w w w
w z

� � � �
�

�

( , ) = ( ( , ), ( , ),... ( , ))
( , ) =

0 1 1 2 1

mmax w w w w w w
w z min

D D D k n

D D

( ( , ), ( , ),... ( , ))
( , ) = (

0 1 1 2 1� � �

� �

� � �
�

� �� � �
�

� �

( , ), ( , ),... ( , ))
( , ) = ( ( ,

0 1 1 2 1

0

w w w w w w
w z max w w

D D k n

D D

� �

� � 11 1 2 1

0 1

), ( , ),... ( , ))
( , ) = ( ( , ),

� �

� � �
D D k n

D D D

w w w w
w z max w w

� �
�

� � � (( , ),... ( , ))
( , ) = ( ( , ), ( ,

1 2 1

0 1 1 2

w w w w
w z min w w w w

D k n

D D D

�

� � �

�
�

� � � )),... ( , )).1�D k nw w�
�

Definition 3.6: Let ( ) ( , )�D w z� � , ( ) ( , ))�D w z� � , ( ) ( , ))�D w z� � , ( ) ( , ))�D w z� � , ( ) ( , ))�D w z� �  and ( ) ( , ))�D w z� �  be 
the strength of connectedness between the two nodes w and z of a PFG G*. Then ( ) ( , ))�D w z� � , ( ) ( , ))�D w z� � ,  
( ) ( , ))�D w z� �  ( ) ( , )),( ) ( , ))� �D Dw z w z� � � �  and ( ) ( , ))�D w z� �  are defined as follows.

( ) ( , )) = ( ) ( , ) : =1,2,3....,
( ) ( , )) = (
� �

�
D D

i

D

w z max w z i n
w z min

� � �

� � ��

� �
D

i

D D
i

w z i n
w z max w z i

�

� � �

) ( , ) : =1,2,3....,
( ) ( , )) = ( ) ( , ) : =1,2,,3....,
( ) ( , )) = ( ) ( , ) : =1,2,3....,
( ) (

n
w z min w z i n
w

D D
i

D

� �

�

� � �

� � ,, )) = ( ) ( , ) : =1,2,3....,
( ) ( , )) = ( ) (

z min w z i n
w z max w

D
i

D D
i

�

� �

�

� � � ,, ) : =1,2,3...., .z i n

Definition 3.7: We call an edge (w, z) a strong edge in a BPPFG G* = (C, D), if

� � � �

� �
D D D D

D D

w z w z w z w z
w z w

� � � � � �

� � �

� �

�

( , ) ( ) ( , ); ( , ) ( ) ( , )
( , ) ( ) ( ,, ); ( , ) ( ) ( , )
( , ) ( ) ( , ); ( , ) (

z w z w z
w z w z w z

D D

D D D D

� �

� � � �

� � �

� � � �

�

� � �� �) ( , ).w z

Definition 3.8: Let G* = (C, D) be a BPPFG and u x C, ∈ . We call a vertex u dominates x, if there exists 
a strong edge between them.

Remark 3.9: Evidently, domination is a symmetric relation on C such as for u x C, ∈ , if u dominates x 
then x dominates u and vice versa. Moreover, if x C∈ , then N(x) consists of all the vertices in C which 
are dominated by the vertex x. Similarly, if

� � � �

� �

� � � � � �

� � �

( , ) < ( ) ( , ); ( , ) > ( ) ( , )
( , ) < ( ) ( , )
u x u x u x u x
u x u x

D D

D ;; ( , ) > ( ) ( , )
( , ) > ( ) ( , ); ( , ) < ( ) ( ,

� �

� � � �

� � �

� � � � � �

u x u x
u x u x u x u

D

D D xx)

for all u x C, ∈ , then the only DS of G* is C.

Example 3.10: The edges (u, v), (u, w), (w, x) and (u, x) are the strong edges in Figure 1(a) while 
the edges (w, v) and (x, v) are not the strong edges. Clearly, a vertex u dominates v, w and x vertices. 
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Similarly, the vertex w dominates v as there is a strong edge between these two vertices. However, a 
vertex v does not dominate w and x as there are no strong edges between them.

Definition 3.11: The open neighborhood of u1 in a BPPFG abbreviated by N(u1) is defined as 
N u u V u u u u u u u u( ) = { ( , ) > 0, ( , ) > 0, ( , ) > 0 ( ),1 2 1 2 1 2 1 2 1 2� � � � �: or� � � � )) < 0, ( ), ) < 0, ( ), ) < 0}1 2 1 2� �� �u u u u .
However, a vertex u2 is said to be a strong neighbor of u1, if an arc (u1, u2) is a strong arc, the set of all 
strong neighbors of u1 is called the strong neighborhood of u1 and is abbreviated by Ns (u1). Similarly, 
N u N u us s[ ] = ( ) { }1 1 1∪  is the closed strong neighborhood of u1.

Definition 3.12: A vertex u C∈  of a BPPFG, G* = (C, D) is an isolated vertex, if �D w z� ( , ) = 0, �D w z� ( , ) = 0, 
�D w z� ( , ) = 0, �D w z� ( , ) = 0, �D w z� ( , ) = 0, �D w z� ( , ) = 0, for all v C∈ , w z≠ . Alternatively, N w( ) =∅  implies 
that there does not exist any neighborhood of z. Hence it is clear that the isolated vertex can never 
dominates any vertex in G*. If w dominates z, then z dominates w. Thus the domination possesses the 
symmetric relation.

Example 3.13: In Figure 1(a), the edges (u, v), (u, w), (w, x) and (u, x) are the strong edges while the 
edges (w, v) and (x, v) are not the strong edges. Here, the vertex u dominates the vertices v, w and x and 
hence N w u v x( ) = { , , }. The strong neighbors of vertex w are u, x. Hence N w u x w u w xS[ ] { , } { , , }.� � �

Definition 3.14: Let G = (C, D) be a BPPFG defined on G* = (V, E) and S be the set of vertices. Then the 
vertex v is said to be a (bipolar picture fuzzy) private neighbor of u S∈  with respect to S, if N v S u[ ] = { }∩ .  
The (bipolar picture fuzzy) neighborhood of u S∈  with respect to S is PN u S v N v u[ , ] = { : [ ] = { }}∩ . 
Alternatively, PN u S N u N S u[ , ] = [ ] [ { }]− − . Also, if there is a strong edge between two vertices u and v, 
then we call v a private strong neighbor of u S∈  and is denoted by PNS.

Example 3.15: From Figure 1(b), we have N u u v( ) = { , } , N v u w( ) = { , } , N x w( ) = { }  and N w u v x( ) = { , , }.  
However, in Figure 1(a), the strong neighbors of w is the set N w u xs( ) = { , } . The set N v u x( ) = { , }  is a 
neighborhood of v but not a strong neighborhood of v. Similarly, the close strong neighbors of w is the 
set N w u x ws[ ] = { , , } . The private neighbor with respect to S = V is PN u S v N v S uS( , ) = { : ( ) = { }}.∩  The 
strong neighborhood of v is N v uS ( ) = { }. Also, N v S u u v w x uS ( ) = { } { , , , } = { }∩ ∩ . Hence v is a private 
strong neighborhood of u.

Definition 3.16: A subset C1 of C is said to be a dominating set (DS) in BPPFG, if for each w not in C1 
there exists z C∈ 1  such that w dominates z. A DS C1 in BPPFG is a minimal dominating set (MDS), if 
there doesn’t exist any proper subset of C1 which is a DS. By a lower domination number (LDN) of G* 
abbreviated as L Gd ( )* , we mean a minimum cardinality among all MDS. Similarly, an upper domi-
nation number (UDN) of G* abbreviated as U Gd ( )*  is the maximum cardinality among all MDS.

In other words, the minimum cardinality of a dominating set (DS) in a BPPFG G* is said to be a 
domination number (DN) of G*, abbreviated as λ( )*G . The DS which contains a minimum vertices is 
called a minimal dominating set (MDS).

Definition 3.17: The DS λ( )*G  of a BPPFG G* is the cardinality of a MDS in G* i.e., 
� � � �( ) =| | | | | |*G V V V� � .

Example 3.18: Let C u v w x= { , , , }  be the set of vertices in a graph shown in Figure 1(a). Let C u v1 = { , }  
be the DS lying in C. Let {w, x} be set other than C1 such that each of its vertex dominates at least one 
vertex in C which implies that C1 is a DS.

Example 3.19: Let C u v w x= { , , , }  be the set of vertices in a Figure 1(b). Here, the DSs are { , , }u v x  and 
{ , , }u w x  while the sets { , }u v , { , }w x , { , }u x , { , }w v , { , }u w , { , , }u v w  and { , , }u w x  are not DSs. Here, MDS 
is { , , }.u v x

Theorem 3.20: A DS C1 of a BPPFG G* = (C, D) is a MDS if and only if for any d C∈ 1  satisfies one of 
the followings.

(i) d is not a strong neighbor of any vertex in C1 (ii) There exists a vertex v C C� � 1 with N v C d( ) = .1∩
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Proof. Let C1 be a MDS in a BPPFG G*. Clearly, for any d C∈ 1, the set C d1 { }−  is not a DS and hence 
v C C d� � �{ { { }}}1  is not dominated by any vertex of C d1 { }− . However, if v = d, then v is not a strong 
neighbor of any other vertex lying in C1. But, if v d v≠ , , then v is not dominated by C d1 { }− , but if dom-
inated by C1, then there is a vertex v which is the only strong neighbor to d. It implies N v C d( ) =1∩ .

Conversely, let C1 be a DS such that for each vertex d C∈ 1 , one of the two given conditions does 
hold. Let C1 is not a MDS. It means that there is a vertex d C∈ 1  such that C d1 −  is a DS. Which 
implies that d is a strong neighbor to a minimum of one of the vertex in C d1 −  and consequently the 
condition (1) fails. Similarly, if C d1 −  is a DS, then each vertex in C C− 1  become a strong neighbor to 
at least one of the vertex in the set C d1 − . Then, the second condition violated, which contradicts our 
hypothesis i.e., at least one of the conditions holds true. Hence C1 is a MDS.

Theorem 3.21: Let G* = (C, D) be a BPPFG with no any isolated vertex and C1 is a MDS. Then C C− 1  
is a DS of G*.

Proof. Let C1 be a MDS and d C∈ 1 . Since G* doesn’t have any isolated vertex implies there is a vertex 
v N d∈ ( ) . Then, certainly v is dominated by at least one of the vertex in C d1 −  which implies C d1 −  
is a DS. Following Theorem.1, v C C� � 1. Hence each vertex in C1 is dominated by at least one of the 
vertex in set C C− 1 . Thus, C C− 1  is a DS.

Definition 3.22: Two vertices of a BPPFG G* = (C, D) are independent, if there doesn’t exist any strong 
edge between them. A subset F of C is an independent set in a BPPFG G*, if it satisfies the followings.

� �

� �

� �

F D

F D

F D

w z w z
w z w z
w z w

� � �

� � �

� � �

( , ) < ( ) ( , )
( , ) > ( ) ( , )
( , ) < ( ) ( ,zz
w z w z
w z w z
w z

F D

F D

F D

)
( , ) > ( ) ( , )
( , ) > ( ) ( , )
( , ) < ( )

� �

� �

� �

� � �

� � �

� � � (( , )w z

for all w z F, ∈ .

Definition 3.23: An independent set F C⊆  of BPPFG G* = (C, D) is a maximal independent, if for 
each w C F� � , the set F w∪ { }  is not an independent. An independent set F C⊆  in a BPPFG G* = (C, 
D) is said to be a maximal independent, if for each z C F� �  the set F w∪ { }  is not an independent. The 
minimum (resp., maximum) cardinality among all the maximal independent sets is said to be a lower 
(resp., upper) independent number of a BPPFG G*, abbreviated as i Gd ( )*  (resp., I Gd ( )* ).

Theorem 3.24: Every maximal independent set in a BPPFG G* = (C, D) is a MDS.

Proof. Assume that F is a maximal independent set of a BPPFG. By assumption, F is a DS and let F 
is not a MDS. Consequently, there must exists at least one of the vertex v F∈  such that F v− { }  is a 
DS. However, if F v− { }  dominates C F v− −{ { }}, then at least one of the vertex in F v− { }  is necessary 
a strong neighbor of u. Which violates the fact that F is an independent set of G*. Hence F is neces-
sarily a MDS.

Remark 3.25: An independent dominating set of a BPPFG G* is both the minimal and maximal 
 independent set. Alternatively, any maximal independent set F1 in G* is the independent dominating 
set of G*.

Corollary 3.26: Let G* be a BPPFG with no any isolated vertex. Then, L G O G
d ( ) ( )

2
.*

*
≤
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Proof. Consider a BPPFG G* without isolated vertex. Then, it has two disjoint DSs which implies 

L G O G
d ( ) ( )

2
*

*
≤ .

Theorem 3.27: In any BPPFG G* defined on G = (V, E) L L O Gd d� � 2 ( )* , where Ld  is the lower dom-
ination number of G*  and equality hold iff

0 < ( , ) < ( ( ), ( ))
0 < ( , ) > ( ( ), ( ))

� � �

� � �
D C C

D C C

w z min w z
w z max w z

� � �

� � �

00 < ( , ) < ( ( ), ( ))
0 < ( , ) > ( ( ), ( )

� � �

� � �
D C C

D C C

w z min w z
w z max w z

� � �

� � � ))
0 < ( , ) > ( ( ), ( ))
0 < ( , ) < ( ( ), (

� � �

� � �
D C C

D C C

w z max w z
w z min w z

� � �

� � � ))

for all w z C, ∈ .

Proof. The inequality is trivial, further Ld = O(G*) iff

� � �

� � �

�

D C C

D C C

D

w z min w z
w z max w z

� � �

� � �

�
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( , ) > ( ( ), ( ))
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w z
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D C C

D
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� �

� � �

�

� �

� � �

� >> ( ( ), ( ))
( , ) < ( ( ), ( ))

max w z
w z min w z

C C

D C C

� �

� � �

� �

� � �

for all w z C, ∈  and Ld = O(G*) iff

min w z w z min w z
max w

C C D C C

C

( ( ), ( )) ( , ) < ( ( ), ( ))
( ( ),
� � � � �

�

� � � � ��

� � �� � � �

� � �
C D C C

C C D

z w z max w z
min w z

� � � �

� � �

�

�

( )) ( , ) > ( ( ), ( ))
( ( ), ( )) (( , ) < ( ( ), ( ))
( ( ), ( )) ( , ) > (

w z min w v
max w z w z max

C C

C C D

� �
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for all w z C, ∈  which is equivalent to � � � � �D D D D Dw z w z w z w z w z� � � � �( , )0, ( , ) < 0, ( , ) > 0, ( , ) < 0, ( , ) > 0  and 
�D w z� ( , ) < 0 , hence C L O Gl d� � = 2 ( )*  iff

0 < ( , ) < ( ( ), ( ))

0 < ( , ) > ( ( ), ( ))

� � �

� � �

D C C
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0 < ( , ) > ( ( ), ( )

� � �

� � �

D C C

D C C

w z min w z

w z max w z
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� � � )))



Khana WA and Taouti A, Results in Nonlinear Anal. 6 (2023), 60–74. 69

Corollary 3.28: Let G* be a BPPFG defined on the graph G, and both G* and G*  having no isolated 

vertex. Then, L G L G O Gd d( ) ( ) ( )* * *� �  and the equality holds iff L G C O G
d L( ) = = ( )

2
.*

*

Proof. By Corollary 1, L G O G
d ( ) ( )

2
*

*
≤  and also L G O G

d ( ) ( )
2

*
*

≤  which implies

L G L G O G O G O Gd d( ) ( ) ( )
2

( )
2

= ( )* *
* *

*� � �

that is,

L G L G O Gd d( ) ( ) ( )* * *� �

if L G L G O G
d d( ) = ( ) = ( )

2
* *

*
 then L G L G O Gd d( ) ( ) = ( )* * *+  conversely, let L G L G O Gd d( ) ( ) = ( )* * *+ . 

Then, by corollary 1, L G O G
d ( ) ( )

2
*

*
≤  and L G O G

d ( ) ( )
2

*
*

≤  If either L G O G
d ( ) < ( )

2
*

*
 or L G O G

d ( ) < ( )
2

*
*

 

then both L G L G O Gd d( ) ( ) < ( )* * *+ , which is a contradiction. Hence,

L G L G O G
d d( ) = ( ) = ( )

2
* *

*

Definition 3.29: Let G*= (C, D) be a BPPFG without isolated vertex. Then the set C1 is called a total 
dominating set (TDS), if for each vertex w C∈  there is a vertex z C∈ 1  such that w z≠  and w dominates z.

Definition 3.30: By a minimal total dominating set (MDS) in BPPFGs, we mean a total dominating 
set (TDS) C1 of a BPPFG such that no proper subset of C1 is a total dominating set (TDS) except C1. The 
minimum (resp., maximum) cardinality of a MDS is said to be a lower (resp., upper) total dominating 
number (LTDN) of G*, and is abbreviated as L Gtd ( )* . The maximum cardinality of a minimal total 
dominating set is the upper total dominating number (UTDN) of G*, denoted by U Gtd ( )* .

Example 3.31: The edges ( , )u v , ( , )v z , ( , )u w  and ( , )x z  of a BPPFG shown in Figure 2 are the strong 
edges. The sets { , , }u v z , { , , , }u v w z  and { , , , }u v x z  are the TDSs. Also, { , , }u v z  is a MDS and the cardinalities 

Figure 2: Bipolar Picture Fuzzy Graph
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of the vertices u, v, and z are 1.55, 1.45 and 1.55, respectively. Hence the lower and upper total domi-
nations of the BPPFG G* are L Gtd ( ) =1.45*  and U Gtd ( ) =1.55,*  respectively.

Theorem 3.32: In a BPPFG G*, L G O Gtd ( ) = ( )* *  if and only if each of its vertex has a unique neighbor.

Proof. If every vertex of G* has a unique neighbor, then the vertex set C is the only TDS in G*. Hence 
L G O Gtd B( ) = ( )* * . Conversely, let L G O Gtd ( ) = ( )* * . Now, if there is a vertex w whose neighbors are u 
and x, then the set C w− { }  is the TDS of G*. And L G O Gtd ( ) ( )* *≤ , a contradiction. Hence each vertex 
in G* has a unique neighbor.

Definition 3.33: A subset of the vertex set C of a BPPFG G* is called a status S, if every vertex w z S, ∈  
has the property that the vertices in C S−  dominated by w is equal to the set of nodes in C S−  domi-
nated by z. Hence all of the vertices in a status S dominate the same set of vertices outside of the status. 
It is notable that every status S must have at least two vertices.

Since we know that the DS which contains a minimum vertices of a BPPFG is a MDS. We interre-
late the terms minimum dominating set, independent dominating set and the status in BPPFGs in 
the below theorem.

Theorem 3.34: If MDS S of a nontrivial connected BPPFG G* is a status of G*, then S is an indepen-
dent dominating set of cardinality 2.

Proof. Let S be a MDS of G*, which is a status. Since G* is connected and has no isolated vertex, there 
must be at least one of the vertex w C S� � . Since S is a MDS, w must be adjacent to at least one 
vertex in S. But, as S is a status, every vertex of S must be adjacent to w. Furthermore, each vertex 
in S must be adjacent to every vertex in C S− . Since S is status, | | 2S ≥ . Assume that | | 3S ≥ , and let 
z S∈  and w C S� � . Since S is a status it implies z is adjacent to every vertex in C S−  and w is adja-
cent to every other vertex in S. Hence { , }w z  is a dominating set, which Contradicts the minimality of 
S. Therefore, | |= 2S . However, if z is adjacent to w, then z is a dominating set of G*, again contradict-
ing the minimality of S. Consequently, | |= 2S  is an independent set.

Definition 3.35: Two vertices w and z are said to be a structurally equivalent, if either N w N zs s( ) = ( )  
or N w N zs s[ ] = [ ]. A set S is said to be a structurally equivalent set whenever every two vertices in S are 
structurally equivalent.

Example 3.36: Clearly, the vertices x and w are structurally equivalent in Figure 1(a), as 
N x N w u w xs s[ ] = [ ] = { , , }.

Corollary 3.37: Let G* be a connected BPPFG and S be a minimum dominating set which is also 
structurally equivalent. Then the set S consists of two independent vertices each of which has degree 
( )O G( ) 1* − .

Definition 3.38: A total domination number (TDN) of G* abbreviated as λt G( )* , is the minimum car-
dinality of a TDS of G*.

Theorem 3.39: If G* is connected BPPFG with O G( ) 3* ≥ , then �t G
O G( ) 2 ( )
3

*
*

� .

Proof. Let S be a total minimum DS of G*. By minimality, each w S∈  either has a private neighbor-
hood or induced subgraph { { }}S w−  contains an isolated vertex. Let P w S Pn w S= { : [ , ] 0}� � . Let B 
be the set of isolated vertices in P and A P B= .−  Further to this, let T be a minimal set of vertices of 
S P−  such that each vertex of B is adjacent to some vertex of T. We note that | || |.T B≤  Finally, let 
B S P T= { }.� �  Then, by definition of I, λt G( )*  is an induced bipolar picture fuzzy subgraph < >=| |I I  
and hence < >= 2I kK , k ≥ 0.

Let a bi i ,  1 ≤ ≤i k  be the distinct edges of < > .I  The connectivity of G* implies that each ai  is 
adjacent to some other vertex xi .  If x P Ti � � , then S Bi− { }  would be a smaller TDS than the set S. 
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Hence x C Si � � . If x xi j=  for i j≠ , then S b b xi j i� �{ , } { } which predicts the same contradiction. By 
the definition of I each xi  is adjacent to at least two vertices of S, and by the definition of P there are 
at least | |P  vertices of C S−  that are adjacent to exactly one vertex of S. Thus | | | |,P k C S� � �  that 
is | | | | ( ) ( )* *A B k O G Gt� � � � � . So, �t G A B( ) =| | | |* �  + | | | |T I+  = (| | | | )A B k+ +  + (| | )T k+ . Since 
| || | | |,T A B� �  we have � �t tG A B k O G G( ) 2(| | | | ) 2( ( ) ( ))* * *� � � � � . Hence � �t tG O G G( ) 2( ( ) ( )* * *� � .  

Hence �t G
O G( ) 2 ( )
3

.*
*

�

4. Application of Domination in BPPFGs towards Social Networks

Modeling by using graphs has diverse applications towards different fields of sciences like computer 
science, physics, mathematics, chemistry, biology, social sciences etc. In the study of social networks, 
it has been observed that there is the relation between two people in a group, and it is important 
to conclude that who is more social, influential or dominating in a group. We can depict this sce-
nario through the graph. We can construct a graph in which the vertex u stands for each person in 
a particular group. The undirected edges in the graph represent the relationship between the two 
persons at vertices u and v. In such types of graphs there are no need of multiple edges and loops. 
The edge between any two vertices shows that there is a relationship between the two persons. Since 
each vertex is of equal importance in the classical graphs theory, so it is not possible to graph the 
social networks model, accurately. Moreover, all of social units (individual or organization) in social 
groups must be given an equal importance in the classical graph theory. However, in the real life the 
situation is very different. Similarly, every edge (relationship) in the classical graphs has an equal 
strength. Moreover, in the classical graphs theory the relationships between any two social units 
have equal strengths. However, in real life it is not realistic. Thus, the acquaintance or influence of 
the person has fuzzy boundaries and thus it would be better to represent such situations through the 
fuzzy graphs. In the fuzzy acquaintanceship or influential graph, each vertex stands for the person 
and its membership value is the strength of his influence within the social network. No doubt, since 
picture fuzzy set is the most developed form of the fuzzy sets, domination in BPPFGs would demon-
strate the best results as compared to the other form of the fuzzy graphs such as intuitionistic fuzzy 
graphs, bipolar fuzzy graphs etc.

Figure 3: Fuzzy influence graph
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4.1 Fuzzy influence graph

We take a fuzzy influential graph of some social network which is shown in Figure 3. In which the 
nodes represent the degree of the level of influence of a person within the social group. The degree of 
the level of influence is expressed in its membership value. Degree of membership states that how 
much a person is influential e.g., X has 60% level of influence within the group. The edges of a graph 
describe the influential level of one person on the other person. The membership degree of edges can 
be considered in terms of positive percentage e.g., Y has 40% influential level with X and so. However, 
U dominates the other that is why it is most busy and hence influential than the others.

4.2 Bipolar fuzzy influence graph

As well as concerned about FGs we are unable to find the negative or positive levels of influence. But 
practically, the influence of a person may be positive or negative. Suppose if a persona A and B belong 
to a social network but having not a good relationships between them then the influence of one person 
between them is negative. We can depict such circumstances through the bipolar fuzzy influential 
graph. Hence we can only describe such scenario through bipolar fuzzy influential graph. Let us con-
sider a bipolar fuzzy influential graph of some social group shown in Figure 4. In which the nodes 
are reflecting the degree of the level of influence of a person belongs to a social group and the edges 
represent the degree of influential levels among the persons. Degree of positive membership can be 
interpreted as how much a person influential while a negative membership tells us that how much a 
person losses the level of influence, X has 50% level of influence within the group but he losses 20% 
level in the same group. Edges of the graph reflect the influence of one person with the other persons 
in the group. The positive and negative memberships degrees of edges describes the percentage of pos-
itive and negative influences for instance e.g., X is acquainted 10% with W and W is not acquainted 
10% with X. Again, since there exist strong edges between all the vertices, but U dominates the others 
and hence most influential and busy in the group.

4.3 Bipolar picture fuzzy influence graph

In FG and BPFGs the neutral term is not involved. In practical, neutrality has its own importance 
which can be described through PFGs. Here, we analyze the influence of the person in a group based 
on the domination of a BPPFG model shown in Figure 1(a).

Figure 4: Bipolar fuzzy influence graph



Khana WA and Taouti A, Results in Nonlinear Anal. 6 (2023), 60–74. 73

The level of the influence of any person is referred to its membership (positive, negative), 
non-membership (positive, negative) and neutral membership (positive, negative) values. The 
degree of the membership (positive, negative) can be interpreted as a power of a person to influence 
or true influence (gaining, loosing). The degree of non-membership (positive, negative) is referred 
to how much power he losses to influence or false influence (gaining, loosing). Also, the degree of 
neutral membership (positive, negative) reflects the person’s with neutral influence (gaining, loos-
ing). In neutral influence, the person does not know well about someone, but he finds him around 
infrequently.

Let us assume that Figure 1(a) represents the group of four people in some social network. Then, 
x has a 50% (resp., looses influence 40%) true influence. Similarly, he has 20% (resp., looses 30%) 
false influence but he gains (resp., looses) 20% (resp., looses 30%) neutral influence within the social 
network. However, the edges of a graph in Figure 1(a) represent the influence between any two per-
sons in the group. The degrees of a membership (positive and negative), non-membership (positive 
and negative) and neutral membership (positive and negative) of the edges show the percentage of 
the power of influence (gaining, loosing) or true influence, how much he has a false influence (gain-
ing, loosing) and neutral influence or non-influence (gaining, loosing). Clearly, the edges ( , )u v , ( , )u w ,  
( , )w x  and ( , )u x  are the strong edges. One can easily deduce that the vertex u dominates v, w and x 
and hence a person u is the most influential than the persons at vertices v, w and x in a group.

5. Discussion and Conclusion

Graph theory has many useful applications in different branches of science specifically in computer 
science, physics, chemistry, operation research, economics etc. Mainly, the problems related to 
the graphs contain uncertainties, it is most appropriate to deal these problems through the fuzzy 
graphs. From last few decades, the fuzzy graphs have shown an enormous applications towards 
modern sciences and technologies, particularly in the fields of computer sciences. In this work, we 
have introduced the concepts of dominations of the most generalized form of the fuzzy graphs named 
bipolar picture fuzzy graphs (BPPFGs). Initially, we have introduced different terms related to the 
dominations of BPPFGs such as vertex cardinality, edge cardinality, strong edge, neighbors, strong 
neighbor of vertex, private neighborhood, independent sets, dominating sets etc. Then, we have pre-
sented some important characterizations of the dominations in BPPFGs which are based on minimal 
dominating sets and maximal independent sets. During this study, we have also investigated the 
lower and upper domination numbers of BPPFGs. In addition, we have discussed the concepts of 
total domination along with few of its characteristics in BPPFGs. We have also described the terms 
status and structurally equivalent in the setting of BPPFGs. At the end, we have presented an 
application of the domination in a BPPFG. We expect that dominations in BPPFGs would be most 
beneficial for solving many problems related to computer sciences such as networks, social media 
etc. One may extend this study to introduce more generalized forms of the domination in BPPFGs 
such as double domination, distance 2 domination etc. This study can be extended towards spherical 
and T-spherical fuzzy sets.
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