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Abstract
The primary goal of this comparative study is to address various solution methods and techniques 
for transient analysis of a three-component system’s reliability. To analyse the system’s transient 
 reliability, a Markov model is used. To determine the outcome of the differential equations of a 
three-component system in the transient state, three methods are used: the Laplace Transform 
method, the Matrix approach, and simple integration. These procedures are executed that has been 
reviewed using MATLAB 7.8.0 (R2009a). These tools and numerical methods offer a more reliable 
mathematical framework and methodology for evaluating the transient reliability of the system. The 
introduction of these techniques is useful for researchers to assess reliability and availability in large 
scale systems. 
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1. Introduction

The estimation of component reliability using information of element reliabilities and their config-
uration is a fundamental process in reliability technology. Markov analysis is used when there is 
some sort of dependency between component breakdowns. The fundamental premise of a Markov 
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process is that, irrespective of any potential previous states the system may have experienced, the 
likelihood of the system changing from one state to another entirely relies on its present state. 
When it comes to failure, the exponential distribution satisfies this Markovian characteristic. 
The two approaches that are most frequently used by many investigators to ascertain the avail-
ability of complex systems are the Laplace transform technique and regeneration methodology. 
The method yields precise findings. The criteria are not satisfied by the numerical approach since 
it approximates the solution of differential difference equations. Singh [1] examined a multiple 
channel system using the matrix technique for solving differential difference equations. The idea 
and associated theory of the multi-state system were progressively suggested by Barton [2] and 
Murchland [3]. In his PhD thesis, Mahajan [4] examined the availability of multiple repairable sys-
tems. The technique necessitates computing the coefficients matrix’s eigenvalues. Lisnianski and 
Levitin [5] investigated the theory of multi-state system reliability and the practical use of ana-
lytical techniques. The overall generation function was used by Levitin [6] to assess the reliability 
of an irreversible MSS with common cause failure. Comparing different systems with dependent 
elements was done by Novarro et al. [7]. Dembinska [8], Navarro et al. [9], and Parsa et al. [10] 
have all conducted additional study on this subject. A k-out-of-n method with independent expo-
nential components was introduced by Li et al. [11]. Their research revealed that some operating 
elements would cease to function as soon as the system failed; repairs start as soon as a component 
breaks, and repair times are independent and exponentially distributed. Analysis was done on the 
mean time between failures, mean working time and the mean down time during a failure repair 
cycle. Azaron et al. [12] proposed a new framework for the reliability analysis of an L-dissimilar-
unit redundant system using the minimal path approach and continuous time Markov methods. 
Amiri and Ghassemi [13, 14] suggested an approach for transient evaluation of availability with 
repairable elements using Markov method and eigenvectors. They gave a technique for calculating 
the system’s availability, survivability, MTTF, and MTSF. Systems that only rely on the number of 
failed elements are included in the large family of dependability systems, and they are essential to 
the system’s reliability. K-out-of-n: F system is a configuration that fails as soon as k out of n units 
fail while K-out-of-n: G system is a configuration that works if and only if at least k of its n units 
is functioning. These systems are frequently used in reliability theory and were formalised (Esary 
and Proschan [15]; Birnbaum et al. [16]. Eryilmaz evaluates its usefulness for systematic study 
and practical applications [17–19]. Gurler and Bairamov [20], Freixas and Puente [21], Petchrompo 
et al. [22] also studied k-out-of-n system. Ram [23] investigated reliability strategies in several engi-
neering and scientific disciplines. The major areas, or past, present, and future trends in reliability 
technique, have been attempted to be identified by the authors. Franko and Tutunco [24] stud-
ied reliability of weighted k-out-of-n: G systems using system signature. Eryilmaz [25] examined 
failed components in a failed and operating k-out-of-n system. In a random environment, Zhang 
et al. [26] examined the reliability-based measures and prognostic problems of a k-out-of-n system. 
Reliability analysis of multi-state systems under common cause failure conditions is investigated 
by Jia et al. [27]. Zhang [28] examined the reliability analysis of k-out-of-n systems with heteroge-
neous components. By Cerqueti [29], who also introduced and studied the usual k-out-of-n systems, 
it is predicted that each component’s part in anticipating the system’s failure is distinct. In a typ-
ical system reliability analysis, the state of a system and unit are usually taken to be normal or 
entirely failed. Due to changes in productivity, working circumstances, environmental effects, and 
system complexities, reliability analysis using a two-state correlation theory system is no longer 
used in real-world engineering. Complex systems and units can live in a variety of states, each of 
which is delineated by a unique efficiency stage, in a multi-state system. This research analyses a 
three-component system using three alternative solution techniques to evaluate reliability in the 
transient state. The possibility of extending the matrix method to estimate the likelihood of differ-
ent complex system states without calculating the matrix’s eigenvalues is discussed. MATLAB is 
used to implement and test these techniques.
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2. Assumptions and Notations

This research aims to evaluate the transient state reliability of a three-component system.
• Consider the instantaneous (failure) rate as the transition between states.
• Because the method is stable and the probabilities of transformation do not shift over time, the 

transition rates will remain constant. This is equal to assuming exponential failure rates.
• No units fail when in standby, and the failure rates for all three systems are constant when they 

are operational.

λ : denote the instantaneous failure rate of three component standby system.
P t nn( ),( =1,2,3) : denote the probability is in nth state at time t.

3. The Proposed Methodology

The probabilities of different system states are represented by a Markov model as a function of time. 
This method can be used to analyse the component’s time-dependent reliability. When the failure 
and repair rates are constant, the approach is successful. The system state behavior is defined by a 
process known as a Markov process if the probability rules of its future state of existence depends 
only on the state it is in and not on how the system arrived at that state. State and time are its two 
variables. The overall condition of a method can be defined in a variety of ways. Because of this, there 
are three potential states for a two-component system with components of 1 and 2: no failure, one 
failure (either 1 or 2), and two failures. Another set of states include no component failed, component 
1, component 2, and both components failed. Consider about a system that has two standby (backup) 
components and one active (operational) component. It is possible to create differential equations by 
using the mnemonic rule. According to the mnemonic rule, the sum of all probability flows coming into 
a particular state from other states minus the sum of all probability flows leaving that state and going 
to other states equals the derivative of probability at that state. These equations can be solved using 
the matrix technique, direct integration, or Laplace transforms. The following definitions describe the 
various system states:

State Component 1 Component 2 Component 3 
1 Operational Backup Backup 
2 Failed Operational Backup 
3 Failed Failed Operational 
4 Failed Failed Failed 

The resulting differential difference equations are as follows.

dP t
dt

P t1
1

( ) = ( )�� (3.1)

dP t
dt

P t P t2
1 2

( ) = ( ) ( )� �� (3.2)

dP t
dt

P t P t3
2 3

( ) = ( ) ( )� �� (3.3)

With initial conditions P P1 2(0) =1, (0) = 0  and P3(0) = 0
Solution of governing differential difference equations (3.1), (3.2), and (3.3) for P t P t1 2( ), ( ), and P t3( ) 

helps to study the system for various parameters like MTBF, availability, maintainability etc. The 
analysis is carried out in detail, with the help of simple integration method, Laplace transform and 
Matrix method. The precision of all the strategies is tested using MATLAB 7.8.0 (R2009a).



Zaidi Z, Results in Nonlinear Anal. 6 (2023), 114–121. 117

3.1 Simple Integration Method
From equation (3.1),

dP t
dt

P t

dP t
P t

dt

1
1

1

1

( ) = ( )

( )
( )

=

�

�

�

�

Integrating both sides

lnP t t
P t e t
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( ) =
( ) =

�
�

�
�

From equation (3.2),

dP t
dt

P t P t

dP t
dt

e P tt

2
1 2

2
2

( ) = ( ) ( )

( ) = ( )

� �

� ��
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with e t��  as an integrating factor

P t e e e dt ct t t
2( ) =� � ��� � �

or P t te cet t
2( ) = �

� �� ��
The initial conditions are P P1 2(0) =1, (0) = 0  and P3(0) = 0.
Therefore, c = 0
we get P t te t

2( ) = �
��

P t3( ) is also derived in a similar way,
From equation (3.3),
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with e tλ  as an integrating factor
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using initial conditions, P3(0) = 0, we get c = 0

Hence, P t t e t
3

2 2
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2
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The system’s Reliability is;

R t P t P t P t
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3.2 Laplace Transform Method

Let F(t) be a function described for all t ≥ 0. The function f s e F t dtst( ) = ( ) ,� �  where s > 0 is known as 

the Laplace transform of the function F(t).

L F t f s e F t dt sst( ( )) = ( ) = ( ) , > 0� � where

3.2.1 Inverse Laplace Transform

If f(s) is the Laplace transform of a function F(t), then the function F(t) is known as the inverse of the 
function f(s).

Consider the equations (3.1)–(3.3)
The Laplace Transforms, using initial conditions are:

( ) ( ) = 1,

( ) ( ) = ,

( ) ( ) =
( )
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Solving these equations, we get

p s
s

p s
s

p s
s

1

2 2

3

2

3

( ) = 1
[ ]

,

( ) =
( )

,

( ) =
( )

,

�
�

�

�

�
�
�

�
�

Taking Laplace Transforms,
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The system’s Reliability is;
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3.3 Matrix Method

Notation: We write P t p i t ii ( ) = ( , ), = 0,1,2.
The coefficient matrix of equations (3.1)–(3.3) is
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The system’s Reliability is;
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3.4 Matlab 7.8.0 (R009a)

It is possible to complete computationally intensive tasks more quickly with MATLAB than with tra-
ditional programming because it was created specifically for mathematical calculations. The acronym 
for matrix laboratory is MATLAB. It is an interactive high-performance software package for compu-
tations in the fields of science and engineering that includes mathematical operations.

Using Matlab, equations (3.1) through (3.2) are solved. P t x P t y P t z x(1, ) = , (2, ) = , (3, ) = , = 1.λ  In 
Matlab, the differential equations with initial conditions are computed using the dsolve syntax.

syms x1
[ , , ] = ( = 1* , = 1* 1* , = 1* 1* ,x y z dsolve Dx x x Dy x x x y Dz x y x z x� � � � � � � � � � ((0) =1 , (0) = 0 , (0) = 0 )� � � � �y z
x exp t x=1 ( * 1)/
y t x exp t x= ( * 1) ( * 1)/
z t x exp t x= ( 2 * 1 2) (2 * ( * 1))∧ ∧ /
>>

Hence,

P t e
P t te

P t t e

t

t

t

(1, ) =
(2, ) =

(3, ) =
2

2 2

�

�

�

�

�

�

�

�

The system’s Reliability is:

R t P t P t P t

R t e t tt

( ) = ( ) ( ) ( );

( ) = 1
2

1 2 3
2 2

� �

� �
�

��
�

��
�� �
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4. Conclusion and Discussion

 This study’s primary goal is to present various problem-solving approaches and techniques for figuring 
out a three-component system’s transient reliability. The Markov Method is implemented to generate 
the model for the time dependent reliability of such system. Mnemonic rule is used for formulating 
difference equations. It has been noticed that the outcomes are consistent when we use the aforemen-
tioned techniques on a three component standby system. Although the Laplace transforms technique 
is useful for simple systems, it is not well suited for complex systems due to the difficulty of inverting 
Laplace transforms. Matrix method is more suitable for complex systems. However, MATLAB makes 
technical computation issues easier to tackle than with more conventional programming languages 
like C, C++, and FORTRAN. These techniques can be used in a variety of industries, giving manage-
ment the greatest possible advantage. The management tries to improve the maintenance facilities it 
offers or, in some other way, to reduce the likelihood that any subsystem will fail. As a consequence, 
reliability engineers and managers can benefit from the findings.
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