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Abstract
A fixed smooth arc from a two-dimensional sphere of three-dimensional space is removed. The 
Laplace-Beltrami operator on the resulting surface is studied. In the paper the boundary conditions 
on a remote arc are found, which guarantee the existence of a unique solution to the inhomogeneous 
Laplace-Beltrami equation.
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1. Introduction

It is known [1] that the two-dimensional sphere S in the three-dimensional space 3  represents a 
Riemannian manifold. The Laplace-Beltrami operator ∆S  on the indicated sphere in a standard way 
is introduced. Since the sphere S is a smooth manifold without boundary, the problem is well defined.

u x u x f x x SS( ) ( ) = ( ), .� ��

The sphere S of the closed curve C is split into two non-intersecting parts S2  and S1  [2, 4].
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The following Dirichlet problem studied in the work [2]

� �

�

�Su x x S
u x g x x C
( ) = 0, ,
( ) = ( ), .

2

Using the potentials of a simple and double layer, the existence of a solution to the indicated Dirichlet 
problem is proved.

Another problem is studied in the work [4]

� ��Su x x x S( ) = ( ), ,2� (1)

� � � � �� �
1
2
( ) ( ) ( , ) ( ) ( , ) ( ) ( )u x u y curl x y t y ds x y curl u y t y

C S y C S� �
� �

dds x Cy = 0, .� (2)

Here �
�

( , ) = 1
4

|1 , |x y x y� � � �ln  represents the fundamental solution of the Laplace-Beltrami opera-

tor. It is shown in the work [4], that the solution to problem (1),(2) is written as

u x x y y d x S
S y( ) = ( , ) ( ) , .
2

2� �� � �

We also note the paper [5], where a boundary value problem for the Laplace-Beltrami operator on 
a punctured sphere was studied. A punctured sphere is a sphere from which one point has been 
removed. In this case, the problem arises: What additional conditions must the solution at the remote 
point satisfy in order to guarantee the uniqueness of the solution?

In the present paper, a fixed arc from the sphere is removed and the same question is studied: what 
additional conditions must the solution on the removed arc satisfy in order to guarantee the unique-
ness of such a solution?

2. Preliminaries

Consider a closed curve C on the two-dimensional sphere S that divides S into two parts S1  and S2 . 
In particular, the curve C S= 1∂  is the boundary of S1 .

Let us introduce some vector identities on the sphere. Let � � �e e er , ,� �  be ordinary unit vectors in spher-
ical coordinates. According to [2], we define the surface gradient of the scalar f on S and the surface 
divergence for the vector function 

� � � �V V e V e V er r= � �� � � �  on a sphere using the following formulas:

�
�
�

�
�
�

�
�

�
�
�

S

S

f x f e f e

div V x V

( ) = 1 ,

( ) = 1 ( , )

sin

sin
(

� � �

� �
� �

�

� �

�

� �

�
ssin )� � ��V ( , ) .�

�
�

�

�
�

This implies the identity:

�S S Su x div u x( ) = ( ).�

We introduce [2] a vector surface rotation for a scalar field f on a sphere:

curl f x f e f eS ( ) =
1

�
�
�

�
�
�� � �� �

� �
sin

and (scalar) rotation of the surface of the vector field 
�

V  as

curl V x V VS

�
( ) = 1 ( , ) ( , ) .

sin
(sin )

� �
� �

�
� � �� ��

�
�

�
�
�

�

�
�

�

�
�
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Another vector identity for the Laplace-Beltrami operator is given in the work [2]:

�S S Su x curl curl u x x S( ) = ( ) .� �for

We introduce the scalar product in the function space L S2( )

� � � � �u v u x v x d u x v x d dL S S x, = ( ) ( ) = ( ( , )) ( ( , ))
2( ) 0

2

0
� � � � � � � �

� �
sin ..

Now we derive Green’s identity. Integrating by parts the scalar product ��S L Su v,
2( ) , we obtain the 

following representation:

� �� �S L S S S S L Su v a u v a v u u v, = ( , ) = ( , ) = , ,
2( ) 2( )

where the symmetrical bilinear form is introduced

a u v u v v uS ( , ) := 1 ( , ) ( , ) ( , ) (
0

2

0

� �

� �
� �

�
� � �

�
� �

�� �
�
�

�
�

�
�
�

�
�sin

sin �� � � �

�

, )

= ( ) ( ) .

�

�
�

�

�
�

� ���

d d

u x v x d
S S S x

The Stokes theorem [3] for a positively oriented curve C and a domain S2  can be written as

S S x C xcurl V x d V x t x ds
2

( ) = ( ) ( ) .� � �
� � �

�

Here 
�
t  is the unit tangent vector to C . Note that a similar identity holds for S1 , but the direc-

tion of the tangent is changed. Now setting 
� �
V v x W x= ( ) ( )  and applying the product rule, we get 

S S x C x S Scurl v x W x d v x W x t x ds v x curl
2 2

( ) ( ) = ( )[ ( ) ( )] ( )� � �� � � �
� � �

�
��
W x d x( ) � . Using 

�
W x curl u xS( ) = ( ) , we 

finally obtain Green’s first formula for Laplace-Beltrami operator,

S S S x S S x C Scurl v x curl u x d v x u x d v x curl u
2 2

( ) ( ) = ( )( ( )) ( )� � �� � �� �� (( ) ( ) .x t x dsx��� �� (3)

In this formula, the role of the bilinear form a u v
S2
( , ) is played by the expression 

S S S xcurl v x curl u x d
2

( ) ( )� � �

. Let’s rewrite the formula (3) by swapping the functions u x( ) and v x( ). As a result, we get

S S S x S S x C Scurl u x curl v x d u x v x d u x curl v
2 2

( ) ( ) = ( )( ( )) ( )� � �� � �� �� (( ) ( ) .x t x dsx��� �� (4)

Subtracting the formula (4) from (3), we obtain the second Green formula for the Laplace-Beltrami 
operator in the form

S S S x C S Su x v x v x u x d v x curl u x u x curl v
2
[ ( ) ( ) ( ) ( )] == [ ( ) ( ) ( )� �� �� � � (( )] ( ) .x t x dsx�

�
(5)

To conclude this section, we present the definitions of the simple and double layer potentials intro-
duced in [2].

The potential of a simple layer with a sufficiently smooth density function σ  is determined by the 
formula:

( )( ) := ( , ) ( ) .V x x y y ds x C
C y

�� � �� �for

The potential of a double layer with a sufficiently smooth density function µ  is given by the formula:

( )( ) := ( ) ( , ) ( ) .W x y curl x y t y ds x C
C S y

� �
� � �� ��� �� �for
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The introduced potentials have the standard properties of single and double layer potentials.
For x C∉ , the simple layer potential satisfies to the condition:

�S C yV x y ds( )( ) = 1
4

( ) .��
�

��
Similarly, the double layer potential satisfies the Laplace-Beltrami equation for x C∉

�S W x( )( ) = 0,��

without additional restrictions on the density µ .

3. Main results

Correct formulation of a boundary value problem for the Laplace-Beltrami operator on a sphere with 
a cut

Let δ > 0 . In this section, as a closed curve C , we choose the curve Cδ  on the sphere S , which is shown 
in Figure 1. The curve Cδ  divides the sphere S  into two parts S1δ  and S2δ . In Figure 1, the surface S2δ  
is shaded. The unshaded part of the sphere S  in 3  is denoted by S1δ .

We set S S S2 1,=δ δ\  and also denote by Cδ  its boundary S2 .δ
According to [2], the fundamental solution of the Laplace-Beltrami operator ∆S  is given by

�
� �

� � � � �( ) log ( ) log[ cos( )sin sin cosx y x y x y x y x, = 1
4

1 , = 1
4

1� � � � � � ccos ]�y .

Figure 1: A two-dimensional sphere with a closed curve that breaks it into two parts.
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In particular [2, 4],

�S x y x y�
�

�( , = 1
4

( ).� � �

for x x y y S= ( , ), = ,0 0� � � �( )� . Here � ( )x y�  is the Dirac delta function.
Consider the Laplace-Beltrami equation on the surface S2δ  from S to 3 . Further 

�
�

�0
2limS  will be 

denoted by S20 . The limiting surface S20  is a sphere with a cut along the arc. The boundary S20  is 
denoted by C0 . We introduce a class of the function W S W Sloc2,

2
20

>0
2
2

2( ) = ( )∪
δ

δ . Assuming that h belongs 

to W Sloc2,
2

20( ), by direct calculation for any x S� 2�  we find

T x x y h y d

h y x y d h

def

S S y

S S y C

( ) = ( , )( ( ))

= ( )( ( , ))
2

2

�

� �

� �

� �

�

� �

�

� �

�

� (( ) ( , ) ( ) ( , ) ( ) ( )

= ( ) 1
4

y curl x y t y ds x y curl h y t y ds

h x

S y C S y

S

� �

�

�
�

�

�

22
( ) ( ) ( , ) ( ) ( , ) ( ) (

� � �
� � �� � �� �h y d h y curl x y t y ds x y curl h y ty C S y C S yy dsy) ,

where t y( )  is the unit tangent vector to Cδ  at the point y .
From the last relation we get

T x h x h y d h y curl x y t y ds x
S y C S y C

( ) ( ) = 1
4

( ) ( ) ( , ) ( ) (
2

� � � �� � ��
� � �

� � �
,, ) ( ) ( ) .y curl h y t y dsS y (6)

Subsequently, we assume that

S
yh y d

2

( ) = 0.
�

��

Thus, from (6) we find

T x h x h y curl x y t y ds x y curl h y t
C S y C S( ) ( ) = ( ) ( , ) ( ) ( , ) ( ) (� �� �
� �

� �
� �

yy ds x Sy) , .2� � (7)

The relation (7) plays an important role in our reasoning. For further purposes, we need to calculate 
the limit of the right side of the equality (7) at � � 0. Therefore, it is convenient to introduce the fol-
lowing linear operators using the formulas

( )( ) := ( , ) ( ) ( ) ,

( )( )
0

0L h x x y curl h y t y ds x C

L h x

s C S y

d

� �
�

� � �lim
�

for

::= ( ) ( , ) ( ) .
0

0
� �

�
� � �lim

C S yh y curl x y t y ds x C
�

for

Note that the operator Ls  corresponds to the single layer potentials, while the operator Ld  corre-
sponds to the double layer potential.

Let us present one useful property of the operators Ld  and Ls.
Let x S0 20∈ , i.e. x C0∈ . Denote by � �1 0( ) = ( , )y x y , 

�
�( ) = ( ).y curl yS�  Let us calculate the values of 

( )( )1L xsψ  and ( )( )1L xdψ  for x S∈ 20 . In order to calculate these values, we introduce the function

R x x y y d
S S y( ) = ( , )( ( )) .

0 2
1

� �
� � �

� � �lim �
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Since

� � � � �� �S Sy x y x y� � �
�1 0 0( ) = ( , ) = ( ) 1
4
,

that

R x x x x y d
S y( ) = ( , ) 1

4
( , ) .0

0 2
� �

� ��
�

� �
� �
lim

This implies for any x x S, 0 20∈

( )( ) ( )( ) = 2 ( , ),1 1 0L x L x x xd s� � �� �

where � �1 0 20( ) = ( , ), .y x y y S�

� � �
� �� ��

�
� � �

�
�

� � � �
( , ) 1

4
( , ) = ( , ) 1

4
( ,0

0 2
0

0 2
x x x y d x x x y

S y S
lim lim )) ( ) ( , ) ( )

( , )
0

1

0

d y curl x y t y ds

x y cur

y C S y

C

� � �

�

� �

� �

�

�

�

�

�

�

lim

lim

�

ll y t y dsS y�1( ) ( ) .
�

Thus, the difference ( )1 1L Ld s� ��  has a singularity on C  of the same character as the fundamental 
solution.

We remind, the functions g x( ) that satisfy to the equation �S g x x S( ) = 0, 20�  are called har-
monic. Denote by H S( )20  the class of harmonic functions on S20  that can have a singularity of the 
same nature as the fundamental solution ε ( , ).x y

As well as necessary to introduce a class of the function

W S h W S h y d

L h x L

L loc S y

d s

2
2

20 2,
2

20
0 20

( ) = { ( ) : ( ) = 0,

( )( ) (

�

�
� ��

�lim

hh x H S h L SS)( ) ( ), ( )}.20 2� ��

Take an arbitrary function h x( ) from the class W SL2
2

20( ) . Since �Sh L S� 2( ) , that T x W S( ) ( )2
2∈  and 

∆ ∆S ST h= .  Thus, T x( ) represents a regularization of the function h x( ). In fact, the function h x( ) 
could have singularities on the curve C . At the same time, its regularization T x( ) no longer has sin-
gularities on the full sphere S , that is, it belongs to the space W S2

2( ).
In particular, the assertion is true.

Lemma 3.1: An arbitrary element h of the class W SL2
2

20( )  for x S∈ 20  can be represented as 
h x T x L h x L h xs d( ) = ( ) ( )( ) ( )( ),� �  where T x( ) is a function from W S2

2( ).
Now we can formulate the statement.

Theorem 3.2: For any function f L S∈ 2( ) and any function g from H S( )20 , the problem

� �

� �

�S

d s

u x f x x S
L u x L u x g x x S

( ) = ( ), ,
( )( ) ( )( ) = ( ),

20

20

has a unique solution in the class W SL2
2

20( ).
Statements similar to Lemma 3.1 and Theorem 3.2 were proved in [5].
Theorem 3.2 implies the main assertion of the present article.

Theorem 3.3: Let K  be a continuous linear operator from the space L S2( ) to the space H S( )20 . Then 
for any f  from L S2( ) the following problem

� ��Su x f x x S( ) = ( ), ,20 (8)
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( )( ) ( )( ) = ( ( )), 20L u x L u x K u x x Sd s S� � �� (9)

has a unique solution from the class W SL2,
2

20( ).
The proof of Theorem 3.3 repeats the arguments given in the proof of a similar theorem [5]. Also 

problem for perturbed harmonic oscillator were considered in [6] and for Laplace operator in [7].
Finally, note that conditions (9) for x S∈ 20  can be rewritten for x C0 ∈  as boundary conditions

x x
x S

d s x x
x S

SL u x L u x K u x
�
�

�
�

� �
0
20

0
20

(( )( ) ( )( )) = ( ( )).lim lim �

In conclusion, we give an example. We take the following operator as an operator K

Kf x f g d x p d
S C

( ) = ( ) ( ) ( , ) ( ) ,� ��� � � � � � �� �

where the fixed function g L S∈ 2( ), p( )τ  is a polynomial on the arc C . In this case, problem (8), (9) is 
equivalent to a boundary value problem on S20

� �

�
� � �

�S

x x x S
d s C

u x f x x S

L u x L u x x

( ) = ( ), ,

(( )( ) ( )( )) = ( ,
20

0 20
0lim � �� � � � � �� �) ( ) ( )( ( )) .p d g u d

S S� �� � (10)

If g( )τ  represents a harmonic function on S , then the boundary condition (10) can be written in a 
more convenient form. To do this, the formula is used:

S S C S y C Sg u d g y curl u y t y ds u y curl g y� � �� � �( )( ( )) = ( ) ( ) ( ) ( ) (� � ���
�

)) ( ) .
�
t y dsy
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