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Abstract

A fixed smooth arc from a two-dimensional sphere of three-dimensional space is removed. The
Laplace-Beltrami operator on the resulting surface is studied. In the paper the boundary conditions
on a remote arc are found, which guarantee the existence of a unique solution to the inhomogeneous
Laplace-Beltrami equation.
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1. Introduction

It is known [1] that the two-dimensional sphere S in the three-dimensional space R? represents a
Riemannian manifold. The Laplace-Beltrami operator Ag on the indicated sphere in a standard way
is introduced. Since the sphere S is a smooth manifold without boundary, the problem is well defined.

u(x) —Agu(x) =f(x), xeS.

The sphere S of the closed curve C is split into two non-intersecting parts S, and S; [2, 4].
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The following Dirichlet problem studied in the work [2]

—Agu(x) =0, xeS,,
u(x)=gx), xeC.

Using the potentials of a simple and double layer, the existence of a solution to the indicated Dirichlet
problem is proved.
Another problem is studied in the work [4]

-Agu(x) =w(x), xe€8,, (1)
~ ) + [ peurle(e,)-F0)ds, [ ox, Veurlu(n) - E()ds, =0, xeC. @)

1 . .
Here &(x,y) = —4—ln |1—{x,y)| represents the fundamental solution of the Laplace-Beltrami opera-
T

tor. It is shown in the work [4], that the solution to problem (1),(2) is written as
u(x) = J.SQS(x,y)w(y)ddy, xe€S,.

We also note the paper [5], where a boundary value problem for the Laplace-Beltrami operator on
a punctured sphere was studied. A punctured sphere is a sphere from which one point has been
removed. In this case, the problem arises: What additional conditions must the solution at the remote
point satisfy in order to guarantee the uniqueness of the solution?

In the present paper, a fixed arc from the sphere is removed and the same question is studied: what
additional conditions must the solution on the removed arc satisfy in order to guarantee the unique-
ness of such a solution?

2. Preliminaries

Consider a closed curve C on the two-dimensional sphere S that divides S into two parts S| and S,.
In particular, the curve C =08, is the boundary of S;.

Let us introduce some vector identities on the sphere. Let €,,¢,,€, be ordinary unit vectors in spher-
ical coordinates. According to [2], we define the surface gradient of the scalar f on S and the surface
divergence for the vector function V=V.é, + V,é, + V€, on a sphere using the following formulas:

1 of . of .
Vef)=——T s + g,
IO = G050 % T a0
div.V(x) = ——| 2V (0.0)+ -2 (sin 0V, (0,0))
s sindlog * 7" 50 o P )

This implies the identity:
Agu(x) = divgV qu(x).
We introduce [2] a vector surface rotation for a scalar field f on a sphere:

Eé’ + _1 iée
00 ¢ sin0 o

chle(x) ==

and (scalar) rotation of the surface of the vector field V as

curlSV(x) =

1 0 o , .
— | ——V (¢,0) + — oV (9,0)) |.
Sme[ 5 V@) 2 GV (o »J
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Another vector identity for the Laplace-Beltrami operator is given in the work [2]:
Agu(x) = —curlgcurlu(x)forx € S.
We introduce the scalar product in the function space L, (S)
(u, v)L ) J- u(x)v(x)do, —I J. u(x(g,0))v(x(p,0)) sin 6dOdp.

Now we derive Green’s identity. Integrating by parts the scalar product <—A Su,v> Ls) We obtain the
following representation: ?

<‘As”70>L2(S> = asw,v) = ag(v,u) = <u’_ASU>Lz(S> ’

where the symmetrical bilinear form is introduced

aswy) =["[" {—— wp )% vlp.0) +sind %v(q),@)%u(@@)}d%w
= jsvsu(x) -V u(x)do,.
The Stokes theorem [3] for a positively oriented curve C and a domain S, can be written as
J.SzcurlSV(x)dO'x = ICV(x) -t(x)ds,.

Here ¢ is the unit tangent vector to C. Note that a similar identity holds for S, but the direc-
tion of the tangent is changed. Now setting V =uv(x)W(x) and applying the product rule, we get

js curlu(x) - W(x)do, = - jcv(x)[vif(x)-f(x)]dsx + jS v(x)eurlgW(x)do,. Using W(x) = curlqu(x), we

finally obtain Green’s first formula for Laplace-Beltrami operator,

js curl u(x) - curlqu(x)do, = Iszv(x)(—ASu(x))de - J.Cv(x) [curlqu(x) - t(x)]ds, . 3)

2

Inthisformula,theroleofthebilinearform A (u,v)isplayedbytheexpression IS curlgu(x) - curlgu(x)do,
2

. Let’s rewrite the formula (3) by swapping the functions u(x) and v(x). As a result, we get

jszcurlsu(x) ccurl o(x)do, = JSZu(x)(—ASU(x))de - jcu(x) [curlgu(x) - t(x) ] ds,. @

Subtracting the formula (4) from (3), we obtain the second Green formula for the Laplace-Beltrami
operator in the form

[ @A) —v@)Au@)ldo, == | [v(x)eurlgu(x) - ux)eurlu()]-F (x)ds, 5)

2

To conclude this section, we present the definitions of the simple and double layer potentials intro-
duced in [2].

The potential of a simple layer with a sufficiently smooth density function o is determined by the
formula:

(Vo)(x) = | #(x,5)0(x)ds, forxeC.
The potential of a double layer with a sufficiently smooth density function u is given by the formula:

W) = | () curlge(x, ) -E()]ds, forxeC.
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The introduced potentials have the standard properties of single and double layer potentials.
For x ¢ C, the simple layer potential satisfies to the condition:

~ 1
Ag(Vo)(x) = EJ.CO'(y)dsy.
Similarly, the double layer potential satisfies the Laplace-Beltrami equation for x ¢ C
As(Wu)(x) =0,

without additional restrictions on the density u.

3. Main results

Correct formulation of a boundary value problem for the Laplace-Beltrami operator on a sphere with
a cut

Let 6 > 0. In this section, as a closed curve C, we choose the curve C; on the sphere S, which is shown
in Figure 1. The curve C; divides the sphere S into two parts S;; and S,;. In Figure 1, the surface S,
is shaded. The unshaded part of the sphere S in R? is denoted by Sis-

We set S,5; =S\ S15 and also denote by C; its boundary S,;.

According to [2], the fundamental solution of the Laplace-Beltrami operator Ag is given by

e(x,y)= —ﬁlog |1 - (x,y)| = —ilog[l —cos(¢, —¢,)sinOsin,0, —cos6, cosO ].

Figure 1: A two-dimensional sphere with a closed curve that breaks it into two parts.
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In particular [2, 4],

1
Ass(x,y) = - +6(x—y).

for x = x(@,0),y = ¥(¢,,6,) € S. Here 6(x — y) is the Dirac delta function.

Consider the Laplace-Beltrami equation on the surface S,; from S to R?. Further limS,; will be
5—0

denoted by S,,. The limiting surface S,, is a sphere with a cut along the arc. The boundary S,, is

denoted by C,. We introduce a class of the function Wy, (S,,) = U W, (S,5). Assuming that /4 belongs
5>0

to sz,m(szo)’ by direct calculation for any x € S,; we find

def
T(x) = [ e(e.y)(-Ash(x)do,

= [, hO)AssGe.y)do, + [ h(y)eurlse(,y)i(y)ds, - [ e(x,)eurlsh(y)i(y)ds,

=hx) - Ji, Moo, + |, heurlse(. s, = [ e y)eurlsh(s)uy)ds,,

where ¢(y) is the unit tangent vector to C at the point y.
From the last relation we get

1
T@)=h@)==1- ] ho)do, + [ hyeurlse(x.ni)ds, = [, o y)eurlsh(y)H(y)ds, ©)
Subsequently, we assume that
[ h(ydo, =0.
Sos
Thus, from (6) we find
T(x) - h(x) = jcﬁmy)cu_ﬂss(x,y)f (y)ds, - jcé(e(x,y)cu_ﬂsh(y)t" (y)ds,, xeS,,. %

The relation (7) plays an important role in our reasoning. For further purposes, we need to calculate
the limit of the right side of the equality (7) at § — 0. Therefore, it is convenient to introduce the fol-
lowing linear operators using the formulas

(Lh)(x) = lim | | (%, y)curlsh(y)E (y)ds,  forx & C,

0005

(L) (x) = lim jc h(y)eurlge(x, ) (y)ds, forx & C,.
- 5

Note that the operator L, corresponds to the single layer potentials, while the operator L, corre-
sponds to the double layer potential.

Let us present one useful property of the operators L, and L.

Let x, € S,,, 1.e. x,€C. Denote by y,(y) = &(x,,y), O(y) = curlgy (y). Let us calculate the values of

(Lyy,)(x) and (Lyy,)(x) for x € S,,. In order to calculate these values, we introduce the function

R(x)=lim[_ s(x.2)(-Agy,(3)do,.
6>0Y995



Dosmagulova K and Kanguzhin B, Results in Nonlinear Anal. 6 (2023), 43-49. 48

Since
1
_Asll/l(y) = _Asg(xoyy) = —5(.’)60 - y) -
4
that
R(x) = —e(x,x.) — ——lim [ &Cx.y)do
Eadd(] A 51_1;13 825 'Y y*

This implies for any x,x, € S,

(Lgw)(x) = (L )(x) = —2&(x,x,),
where vy, (y) = &(x,,y), y€S,.

1 1 B,
—-&(x,x,) ——1i elx,y)do, =e(x,,x)——1i elx,y)do, +1i curl.e(x, y)t(y)ds
(ex) = lim [ e(ea)do, = o) = lim[ . o(.9)do, +lim|, yi(eurlse (e, )i ()ds,

“lim |, £(x, y)eurlgy, ()i (y)ds,.
[

Thus, the difference (L,y; — Lyy;) has a singularity on C of the same character as the fundamental
solution.

We remind, the functions g(x) that satisfy to the equation Agg(x)=0, xe8,, are called har-
monic. Denote by H(S,,) the class of harmonic functions on S,, that can have a singularity of the
same nature as the fundamental solution g(x, y).

As well as necessary to introduce a class of the function

Wy, (Sp0) = th € W1,o(Sy0) :lim [ h(3)do, =0,
5—>0v99(
(L h)(x) = (Lh)(x) € H(S,,),Agh € L,(S)}.

Take an arbitrary function h(x) from the class WZQL (S,,)- Since Agh € L,(S), that T'(x) € WZQ(S) and
AT = Agh. Thus, T(x) represents a regularization of the function h(x). In fact, the function A(x)
could have singularities on the curve C. At the same time, its regularization 7'(x) no longer has sin-

gularities on the full sphere S, that is, it belongs to the space WQZ(S).
In particular, the assertion is true.

Lemma 3.1: An arbitrary element h of the class WQZL (Syq) for xe€8,, can be represented as
h(x) =T (x) + (L,h)(x) — (L h)(x), where T(x) is a function from sz (S).
Now we can formulate the statement.

Theorem 3.2: For any function f € L,(S) and any function g from H(S,,), the problem
—ASLL(DC) = f(QC), X e SQO’
(Lgu)(x) — (L) (x) = g(x), x €Sy,

has a unique solution in the class W, (S,,).
Statements similar to Lemma 3.1 and Theorem 3.2 were proved in [5].
Theorem 3.2 implies the main assertion of the present article.

Theorem 3.3: Let K be a continuous linear operator from the space L,(S) to the space H(S,,). Then
for any f from L,(S) the following problem

-Agu(x) = f(x), xSy, (8)
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(Lyu)(x) = (Lu)(x) = K(-Agu(x)), x€S,, 9

has a unique solution from the class W22L (Sy0)-
The proof of Theorem 3.3 repeats the arguments given in the proof of a similar theorem [5]. Also
problem for perturbed harmonic oscillator were considered in [6] and for Laplace operator in [7].
Finally, note that conditions (9) for x € S,, can be rewritten for x, € C as boundary conditions

lim (L)) ~ (L)) = lim K(-Agu(x))
i =S

In conclusion, we give an example. We take the following operator as an operator K

Kf(x) = [ f@)g()do, - | #(x,0)p()do,,

where the fixed function g € L,(S), p(r) is a polynomial on the arc C. In this case, problem (8), (9) is
equivalent to a boundary value problem on S,

-Agu(x) = f(x), xe€8S,,
lim (L))~ (L)) = [ £(x,0)p@)do, - | gE)(Agu)do, . (10)

xaxoxesm)

If g(r) represents a harmonic function on S, then the boundary condition (10) can be written in a
more convenient form. To do this, the formula is used:

[ @O Cau)do, = [ geurlu(y) -1(x)ds, - [ weurlsg(NE(y)ds,.
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