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Abstract

In this paper, we expand on the notion of the g-derivative (or g-difference) operator for meromorphic
multivalent functions, define the higher-order g-derivative operator for meromorphic multivalent
functions associated with quantum calculus, and introduce new subclasses of meromorphic multiva-
lent g-starlike functions in connection with Janowski functions. We investigate a number of useful
properties of the Janowski functions and higher-order g-derivative operator for a new class of mero-
morphic multivalent g-starlike functions. Among the many potential uses of this class that we inves-
tigate are coefficient estimates, distortion theorems, partial sums, the radius of starlikeness, and a
few other well-established results.
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1. Introduction and Definitions

The M(9) is a set of all analytic functions A, that are meromorphic multivalent in the punctured
open unit disc

U¥*={z:2eC and 0<]|z| <1},
and every hd € M(9) is of the form:

hy(@ ==+ Y0, 2" (FeN={1,2,.). (1.1)
< v=0

We noticed that for 9 = 1, we have
M(@1) =M.

Many authors introduced and studied several different subclasses of meromorphic univalent func-
tion class M, see for (example [1-5]).

A function h, € M(9) is known as meromorphic multivalent starlike whenever it satisfies the
inequality

JM8%3%=%@GA43%9{}2h“@j>O
hy(2)

and let MS*(9, a) represent the class of meromorphic multivalent starlike functions of order a, (0 < a
< 1) whenever it satisfies the inequality

,Ms%&ay=hge%ﬂa$:mffﬁ“@]>a
hy(2)
Note that

MS* (9, 0) = MS*(9).

Numerous authors have done substantial research on these classes, for details (see [6-9]). Now we
recall some basic notations and fundamental concepts of g-calculus operator theory and definitions,
which will be helpful for the understanding of this article. We assume throughout this investigation
that

qe(0,1), -1<Y,<Y <1, and 9eN=1{1,23.}.
Definition 1. (see [10]). Consider the q-number defined as:

120 (seq)
AR
¢ (¢{=veN)
k=0
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Definition 2. (see [11] and [12]) . Let A is the set of all analytic functions and h € A. The g-derivative
(or q-difference) D, operator is defined by

h(z)—h(qz) (z#0)
(D,2)(z)=1 (1-q)z (1.2)
h'(z) (z=0).
We observed from equation (1.2) that
]il’{l_(th)(Z) =h'(z).

For h € A and from equation (1.2), we have

(D) (z)=1+ i[v]qavzv_l.

Here analogous to Definition 3, Mahmood et al. [13] extend the idea of g-difference operator for
h, € M(9) given in (1.1) and defined a new class MS: WY Yl of meromorphic multivalent functions.

Definition 3. (see [13]). For h € M. The q-derivative (or q-difference) Dq operator for a sub-collection
of C is defined by

(Do)~ MA@z w3
(1-q)z
For h € M and from (1.3), we have
1 & . .
=q7+;[vllavz L Vzel*. (1.4)

Definition 4. Furthermore, on account of (1.1) and (1.3) , We generalize the concept of a q-difference
operator for h, € M(9) such that

(D,h,)(2) = ;_imq 2oy ;[v + 8] 02", (1.5)
(D2h,)(2)= [;_j] (q%j[g]q [9+1] 2

+ i[v +8] [v+9-1] a2,

v=0

(D2, )(2) = («;—;](;Tl}(q‘_jj[gj [941],..[28-1]

+i[v+ 1911 [v + 3—1]q ...[U+1:|q Ay 92"
v=0
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q28

(DR, )(2) = [_—ﬂ [_TllJ [_—11] (9], [9+1] -[28-1] =
9" )\q
(1.6)
= [v+9],! .
+ ~ |:U:|q , au+5‘z )

+Z q': 3,12'”_1
[v —1]q P

and (th@) (2) is the 9-th time q-derivative of h(2).

Now, for each A, € M (9), the expression in (1.1) when differentiated s times with respect to z
yields

(Dshy)(2) =z "+ 0, 40,42, (1.8)
v=0
where
[v+ 1911 !
T e I
[v+.9—s]q! (L9)

i = (;_;J[(I‘le{q‘_jjm [(9+1], [26-1%] %,

forse N,=Nu {0} .

Taking 9 = 1 in (1.7) then we have the g-derivative (or ¢-difference) Dq for h € M which is given
by (1.4).

Recently, g-calculus has attracted more attention from researchers due to its applications in
mathematics and physics. Ismail et al. article [14] first described the g-extension of the class of
g-starlike functions. Numerous well-respected academics have since carried out ground breaking
work in the field of Geometric Function Theory. In particular, the g-Mittag-Leffler functions were
investigated by Srivastava and Bansal [15, 16] and in [17]. The authors of [18, 19] also explored the
class of g-starlike functions and looked into a third Hankel determinant. Using g-calculus operator
theory, Srivastava et al. have recently published a series of studies (for example, [20—24]). In addi-
tion, many mathematicians have investigated operator theory in the g-calculus within the frame-
work of Geometric Function Theory, for examples, [25-31].

Definition 5. A function h, € M(9) be in the class MS;"B [Y,, Y,] if and only if

o FEh)E)|
(Y, -1) hy (2) (Y, 1)_ . ) . |
R I
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It can be observed easily that
MSF (Y, Y)=MS(Y,Y).

Mahmood et al. have introduced and investigated this class in [13].
It is clear that

lim M8, [¥,,Y, ]= MS'[1,.Y, ]

qg—1-

where MS* [Y, Y ], Ali et al. introduced and investigated this class in [32].
Forq— 1-, Y =1and Y, = -1, then

lim MS; [1,-1] = %MS",

qg—1-

where MS* denote the class of meromorphic starlike function.
In this section, we explore a sufficient condition for A, € MS;s[Yl, Y,] that will be utilized in the
exploration of subsequent outcomes. We will also study the ratio between the series of partial sums

k
hop@ ==+ a, 2 (keN) (1.10)
< v=0
and the function A, of the kind provided by (1.1) , when the coefficients are sufficiently small.

2. Main Result
2.1. Coefficient Estimates
Theorem 1. Let h, is a function of type (1.1), then f belongs to the class MS:‘,S[YI, Y if

ZAg,g (YI’Y2)|aU+.9|SYq,.9 (Y1’Y2)’ (2.1)
v=0
where
Ao (Y,Y,) =2(0,.5 +1) + |V, +1) g, — (Y, -1)| (2.2)
and
Y., Y, )=, +DA+F, +)| -2, +1), (2.3)

where 1, is given by (1.9).
Proof. Suppose that (2.1) is satisfy, then it is enough to prove that

(Y, -1) o (2) (v, 1)_ .
(Y, +1) _W () 1—ql“1-¢
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Now we have

(1 -1)| - |-

(/11 + 1) + Z(]‘ + (pv+.9) av+.9
<2 s +—L (2.4)

(%, +1) 2 + (%, +1) - S[(% +1) g, (% 1)

1
The inequality (2.4) is bounded by q if

av+9

ZAZ,S (Y1.v)
v=0

where AZ’Q(YP Y, and Y, ,(Y,, Y)) are given by (2.2) and (2.3) respectively. The proof of Theorem 1 is
thus concluded.

Q9| <Y, (Y1’Y2)’

Corollary 1. Let h is a function of type (1.1), then it will be in the class /\/lgS;’flq[Yl, Y,], then

Yq,& (le’YZ)

Q4 < .
AL (YY)

(2.5)

Equality hold for the function

Yq,.9 (Yl’YvZ)
Ags(Y1,Y5)

v+9-1
’

1
hy,(2)=—+

where Y., (Y, Y) and A‘(’L&(Yl, Y)) are given by (2.2) and (2.3) respectively.
Theorem 1 has a well-known corollary that was first proposed in [13] for the case when 9 = 1.

Corollary 2. [13]. Let h is a function function of h € M be in the class MS{Y,, Y], if

3 A @Y, Ya)a < Y(1.Y0),
=1
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where
AW Y, Y, =2(lvl,+ D+ (¥, +Dlvl,-(Y,- Dlg
and
YY,Y, =1 ,+)—-(Y,+Dql+2(1-9q).

2.2. Distortion Inequalities

Theorem 2. If hy € MSH[Y, Y,], then

L_Yq,S(Y;’YZ)r < h
ré A;’g(Yl,YQ)

Equality hold for the function

h =— 4+ =7 tz=1
0,1(2) 29+A;,5(Y1,Y2)Z at z =ir,

with A‘;ﬂg(Yl, Y) and Y., (Y, Y) are given in (2.2) and (2.3) respectively.
Proof. Let h, € MS;Q[YU Y,] . Then in the view of Theorem 1, we have

A (Y)Y
v=1

av+3| SZAZ,S(Ysz) Gy < Yo (Y1, Y5),

v+8
v=1
which yields
1 < S 1Y, (%Y,
@<+ S oh 8sr_3+r921|am|sr_3+%ﬁ.
Similarly, we have
1 & o1 & 1 Y,.(%.Y)
h > — 8 s~ 8 >4 _—es\T1072) s
|3(Z)|>r‘9 Uﬂawgr >r‘9 r;av+9|>r3 —A}Iﬂg(Yl,YZ)r

Thus its complete the proof of Theorem 2.

Theorem 2 has a well-known corollary that was first proposed in [13] for the case when 9 = 1.

Corollary 3. [13]. If h € MS: [Y, Y]], then

1 XM Ye) Ihy(2)| <2+
r

Y(Y,,Y,,q) .
r A}I,S(Yl,YZ)

Ags (YY,)

Equality hold for the function

Y(Y,,Y,,
hl(z):}—l( DALY

atz=1ir.
Aq,é? (Yl’YZ)
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Theorem 3. If h, € MSZ.«)[YP Y], then

1 (9+1)7,, (YY) <y <
r3+1 A}I,Lg (YpYz) =|'"9 = p

AR LY R
Aq,&) (Yl’yv2)

and A’:M(Yl, Y) and Yq,S(Yl’ Y)) are given by (2.2) and (2.3) respectively.
Proof. The proof of Theorem 3 can easily obtain by using the same steps of Theorem 2.
Theorem 3 has a well-known corollary that was first proposed in [13] for the case when 9 = 1.
Corollary 4. [13]. If h € MS:;[YI, Y], then
1 27, (VY)
r A, (YuYz)

o< L Pahts) )
<|n'(2)|< S INCAAR (|| ="r)-

2.3. Partial Sums for the function class MSf;,s[Yz’ Y,/

Here, we examine the relation-ship between the series of partial sums and a function of the type
(1.1). We will investigate sharp lower bounds for

Re hy(2) , hox, (2)], Re D1y (2) and Re —(th‘g’k)(Z) .
hy . (2) hy(z) D, hy,(2) (thg)(z)

Partial sums of h, , are represented by

1 Q v+3
hp(2)=—+ > a,,2""
< v=0

Theorem 4. A function h, of the type (1.1) satisfies condition (2.1), then

Re| 1@ |51 (vzel) (2.6)
hs,k (2) X941
and
h
Re[ 9,k(2)] > _ Xkrgn (VZ c U), (2.7
h’.9 (Z) 1+ Zk+9++1
where

As,y (YpYz)

Ty =212 (2.8)
MUY (YY)

and Akq 9(Y, Y, and Yq’s(Yl, Y,) are defined in (2.2) and (2.3) respectively.
Proof. We build up a proof of the inequality (2.6) by assuming that

k ©
1+ Zam&zwg_l T Xkron z av+szv+g+1
[ B (2) _(1_ 1 ﬂ
k+9+1

v\ 7 — v=k+1 — 1+ 9 (Z) )
hg,j (2) 1+ iawﬁgzw&ﬂ 1+ q, (Z)

v=0

Xhr9+1
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If, we set

1+q,(z) 1+w(z)
1+q,(2) 1-w(z)’

then, after a little more simplifying, we have

w(z) = 9,(2) —q,(2)
2+q,(2)+9,(2)

Thus, we find that

0
v+8-1
Akroil Z a,, 9%
_ v=k+1
w (Z) - k 0
v+9+1 v+9+1
2+ 22 Q.97 + Ar+941 z Q,, 9%
v=0 v=k+1
and
o0
Ak+941 Z av+3|
‘w (2)‘ = k vk e
2- 22 av+.9| = Xr+9n1 Z av+8|
v=0 v=Fk+1
Now one can see that
lw (@) <1
if and only if
0 k
2Zk+3+1 Z av+9| <2- 22 av+9|’
v=k+1 v=0
which implies that
k 0
Z|av+.9| + Ao Z av+.9| <1 (29)

Finally, The proof of (2.6), only requvi:roes us to demcﬁé%rate that the L.H.S of (2.9) is bounded above

by isz |av+g|, which is equal to

v=0
k Ee)
Z(I_ng) av+9|+ Z (Zk+3+1 _zvh?) av+3| > 0.
v=0 v=k+1 (2 10)

Now we have finished the demonstration of inequality in (2.6).
Next to prove the inequality (2.7), we fixed

v=0 v=Fk+1

o0

v+9-1
1+ Z a, 2

v=0

k o
v+9-1 v+9-1
} 1+ Zav+92 = Xr+9n Z a,, 9%

ho(2)
1+ 9.k _ k+8
( xkhg)[ hyg (Z) L+ Xpio
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where

0

(1 + lk+|9+1) Z av+3|
‘w(z)‘ < . vkl <1. (2.11)
2- 22 av+8| - (Zk+8+1 - 1) Z av+3|
v=0 v=k+1
The inequality (2.11) is equivalent to
k 0
av+9|+Zk+3+1 z av+.9|S1' (212)

v=0 v=k+1
We have now finished the proof of (2.7) by establishing that the L.H.S in (2.12) is bounded above

by z Koo |av+ 3|. This concludes the proof of Theorem 4.
v=0

Theorem 5. If h, of the form (1.1) hold the condition (2.1), then

Re[M}ZI—M (VzeU)

(DR ) () e
and
Re (thg,k )(Z) > Xkr941 (VZ c [U)
(D,hy)@) | Zwon +[ R+ 8], ’

where x,,, is given by (2.8) .

Proof. In this case, we do not detail how we came to prove Theorem 5. It 1s analogues cab be found in
Theorem 4.

2.4. Radius of Starlikeness

In the Theorem 6 we obtain the radius of starlikeness for the class /\/lS;;9 [Y,, Y,], when A, given by
(1.1) is meromorphically starlike of order a(0 <a <1)in |z| <r.

Theorem 6. Let the function h, defined by (1.1) will belong in the class ./\/l'S’;"’L9 [Y,, Y,]. Then, if

) v+d
of (1—0!)Aq’g(Y1’Y2) =r
(v 9+a] +Q-)r,, (%.Y,)

is positive, then h, is 9-valently meromorphically starlike of order a in |z| <r.
Proof. To prove the Theorem 6, we have to show that
zD h,(2)

h, (z) +1

<l-a (0<a<1) and |z|£r1.
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We have
|2D h.(2) Z[v +9+ a]qav+3z“+‘9 Z[v + 9+ a]q czv+g||z|v+‘9
hq 9 + l‘ — |v=0 — < v=0 ~ . (213)
| 9(2) ‘ ig + Zawﬂgzw@ 1— Z av+3| 5 v+
< v=0 v=0
Hence (2.13) holds true if
S [v+8+a], o] <(1- a)(l -3 av+9||z|”*9j. (2.14)
v=0 v=0
We may express the inequality (2.14) as:
» (lv+9+a| +1-a) ot
ZO[[ s ]av+g||z| a1 215)

With the help of (2.1), the inequality (2.15) is true if

L[v+l9+a:|q +(1—a)J
z

v+ < Az,g (Y1;Y2) )
Yq,S (YVI’Y2)

(2.16)

l-a

Solving (2.16) for |z|, we have

1

(1-a)Ay, (V,.Y,) o
|Z|S[[v+g+a]q A-ar, (V.5 @17)

In the view of (2.17), Theorem 6 is now completed.

3. Conclusion

In this article, we used the concepts of g-calculus notations and introduced a higher-order g-derivative
operator for multivalent meromorphic. We used this newly defined operator and Janowski functions
to establish a new class of meromorphic multivalent g-starlike functions. Furthermore, we investi-
gated some useful properties, such as coefficient estimates, distortion theorems, partial sums, and the
radius of starlikeness for the functions belonging to the newly defined class of meromorphic multiva-
lent g-starlike functions. We also highlighted a number of well established consequences of our main
findings.

Further mathematical work may be done using the operator of this article and the subordinations
approach, which enables for the definition of several further subclasses for meromorphic functions.
For these classes, a number of new properties can be investigated, such as Feketo-Szego inequality,
Hankel determinant, Upper bound, subordination results, etc.
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