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Abstract
In this article, we extend several known results from the ring of all n × n matrices with complex 
entries to any ring R with nonzero unity 1 and involution*. We introduce various results concerning 
Hermitian, skew-Hermitian, Unitary and Normal elements of R. Also, we propose two versions of the 
norm of an element and the orthogonality of two elements of R. Furthermore, we define an order on 
the elements of R and examine some properties. Finally, we establish the concept of inner rings and 
study some of its properties.
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1. Introduction

Let R be a ring with unity 1. A maping * : R → R is said to be an involution if the following hold for 
all a, b ∈ R:

(1) a** = a.
(2) (a + b)* = a* + b*.
(3) (ab)* = b*a*.
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Example 1.1. [1] Let R = Mn(R) (the ring of all n × n matrices with real entries), and for A ∈ Mn(R), 
A* = At (the transpose of A) is an involution on R.

Example 1.2. [2] Let R = C (the ring of all complex numbers), and for a+bi ∈ C, (a + bi)* = a + bi = 
a − bi is an involution on R.

Example 1.3. [3] Let R = Mn(C) (the ring of all n × n matrices with complex entries), and for A ∈ 
Mn(C), A* = At̅ (the transpose of A, and take the conjugate to the elements of A) is an involution on R.

Example 1.4. [4] Let R = Cn, and for 
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  is an involution on R.

An element a ∈ R is said to be Hermitian if a* = a, skew-Hermitian if a* = –a, unitary if a*a = aa* 
= 1 and normal if a*a = aa*. Clearly, Hermitian, skew-Hermitian and unitary elements are normal. 
However, the next example shows that the converse is not necessarily true:

Example 1.5. Consider R = M2(R) with involution A* = At. Choose 
1 1
1 1

A − 
=  
 

, then A is normal, but 
A is not Hermitian, not skew-Hermitian and not unitary.

For more details on rings with involution, see [1, 2, 3, 4, 5, 6, 7]. In this article, we extend sev-
eral known results from the ring of all n × n matrices with complex entries to any ring R with non-
zero unity 1 and involution ∗. We introduce various results concerning Hermitian, skew-Hermitian, 
Unitary and Normal elements of R. Also, we propose two versions of the norm of an element and the 
orthogonality of two elements of R. Furthermore, we define an order on the elements of R and exam-
ine some properties. Finally, we establish the concept of inner rings and study some of its properties.

2. Hermitian, skew-Hermitian, Unitary and Normal Elements

In this section, we introduce several results concerning Hermitian, skew-Hermitian, Unitary, and 
Normal elements of R. Let R be a ring with nonzero unity 1 and involution ∗. Define d : R × R → R by 
d(a, b) = b*a. We begin our results with introducing some basic properties of d.

Lemma 2.1. Let R be a ring with involution ∗ and a, b, c ∈ R. Then

(1) d(a, a) is Hermitian, and if R is a domain, then d(a, a) = 0 if andronly if a = 0.
(2) d(a + b, c) = d(a, c) + d(b, c).
(3) d(a, b + c) = d(a, b) + d(a, c).
(4) d(ac, b) = d(c, a*b).
(5) d(c, ab) = d(a*c, b).
(6) d(a, b) = d(b, a)*.
(7) d(–a, b) = –d(a, b).
(8) d(a, –b) = –d(a, b).
(9) d(na, b) = n.d(a, b) for any integer n.

(10) d(a, nb) = n.d(a, b) for any integer n.

Proof. 

(1) d(a, a)* = (a*a)* = a*a = d(a, a) that is d(a, a) is Hermitian. Suppose d(a, a) = 0. Then 
0 = a*a and since R is a domain, either a = 0 or a* = 0, but if a* = 0, then a = 0* = 0. The 
 converse is clear.

(2) d(a + b, c) = c*(a + b) = c*a + c*b = d(a, c) + d(b, c).
(3) Similar to 2.
(4) d(ac, b) = b*(ac) = (b*a)c = (a*b)*c = d(c, a*b).
(5) Similar to 4.
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(6) d(a, b) = b*a = (a*b)* = d(b, a)*.
(7) d(–a, b) = b*(–a) = –(b*a) = –d(a, b).
(8) Similar to 6.
(9) Let n be an integer. If n is positive, then
 d(na, b) = d(a + ..... + a, b) = d(a, b) + ..... + d(a, b) = n.d(a, b). If n
 is negative, then n = –m for some positive integer m, and then d(na, b) = d(–ma, b) = –d(ma, 

b) = –m.d(a, b) = n.d(a, b). Also, if n = 0, then d(na, b) = 0 = n.d(a, b).
(10) Similar to 8.

Theorem 2.2. Let R be a ring with involution * and a ∈ R be a Hermitian element. If d(ab, b) = 0 for 
all b ∈ R, then a = 0.

Proof. Let x, y ∈ R. Then d(a(x + y), x + y) – d(a(x – y), x – y) = 2d(ax, y) + 2d(ay, x), and then by 
assumption 2d(ax, y)+2d(ay, x) = 0 it follows that d(ax, y) = –d(ay, x) for all x, y ∈ R. Choose y = ax, 
then d(ax, ax) = –d(a2x, x) = –d(ax, ax) as a is Hermitian. So, 2d(ax, ax) = 0 for all x ∈ R, and then ax = 
0 for all x ∈ R which implies that a = 0.

Theorem 2.3. Let R be a ring with involution *. Then a ∈ R is Unitary if and only if d(ab, ac) =  
d(b, c) for all b, c ∈ R.

Proof. Suppose that a is an Unitary element. Let b, c ∈ R. Then d(ab, ac) = d(a*ab, c) = d(1.b, c) = 
d(b, c). Conversely, choose c = b, then 0 = d(ab, ab) − d(b, b) = d(a*ab, b) − d(b, b) = d(a*ab − b, b) 
= d((a*a − 1)b, b) for all b ∈ R. Since (a*a − 1) is Hermitian, by Theorem 2.2, a*a − 1 = 0, i.e., a is 
Unitary.

Theorem 2.4. Let R be a ring with involution ∗ and a ∈ R. Then a is a Normal element if and only if 
d(ab, ab) = d(a*b, a*b) for all b ∈ R.

Proof. Suppose that a is a Normal element. Then d(ab, ab) = d(b, a*ab) = d(b, aa*b) = d(a*b, a*b) 
for all b ∈ R. Conversely, let x = a*a – aa*. Then x is Hermitian with d(xb, b) = d((a*a – aa*)b, b) = 
d(a*ab, b) – d(aa*b, b) = d(ab, ab) d(a*b, a*b) = 0 for all b ∈ R, and then by Theorem 2.2, x = 0, i.e., a 
is a Normal element.

Theorem 2.5. Let R be a ring with involution ∗ and a, b ∈ R are Unitary. Then ab is Unitary.

Proof. Since a and b are Unitary, then aa* = 1 = a*a and bb* = 1 = b*b, and then (ab)*(ab) = b*a*ab = 
b*1b = b*b = 1, and (ab)(ab)* = abb*a* = a1a* = aa* = 1. Thus, ab is Unitary.

Theorem 2.6. Let R be a ring with involution ∗. Suppose that 2 ∈ R is not a zero divisor. Let a ∈ R 
such that a = b + c for some Hermitian element b ∈ R and Skew-Hermitian element c ∈ R. Then a is a 
Normal element if and only if bc = cb.

Proof. a*a = (b + c)*(b + c) = (b* + c*)(b + c) = (b – c)(b + c) = b2 + bc – cb – c2. Similarly, aa* = b2 – bc + 
cb – c2. So, a*a – aa* = 2(bc – cb). If a is Normal, then since 2 is not a zero divisor, bc = cb. The con-
verse is clear.

Theorem 2.7. Let R be a ring with involution ∗ and a ∈ R be a skew-Hermitian element such that  
a2 − 1 is a unit. Then (a + 1)(a − 1)−1 is an Unitary element.

Proof. Let b = (a + 1)(a − 1)−1. Then b*b − 1 = (a* − 1)−1(a* + 1)(a + 1)(a − 1)−1 − 1 = (a + 1)−1(a − 1)(a + 1) 
(a − 1)−1 − 1 = (a + 1)−1[(a − 1)(a + 1) −(a + 1)(a − 1)](a − 1)−1 = (a + 1)−1[a2 − 1 − (a2 − 1)](a − 1)−1 = 
(a + 1)−1 [0] (a − 1)−1 = 0. Hence, b = (a + 1)(a − 1)−1 is Unitary.

Theorem 2.8. Let R be a ring with involution ∗ and a ∈ R such that a = b−1b* for some unit b ∈ R. 
Then a is Unitary if andronly if b is Normal.
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Proof. Suppose that a is Unitary. Then 1 = a*a = b(b*)−1(b−1b*) = b(bb*)−1b*, and then b−1 = (bb*)−1b* 
it follows that (bb*)b−1 = b*, and then bb* = b*b. Hence, b is Normal. Conversely, a*a = b(b*)−1b−1b* = 
b(bb*)−1b* = b(b*b)−1b* = bb−1(b*)−1b* = 1. Hence, a is Unitary.

Theorem 2.9. Let R be a domain with involution ∗ and a ∈ R be an Unitary element. If ab = nb for 
some integer n and nonzero b ∈ R, then a = ±1.

Proof. Since a is Unitary, d(b, b) = d(ab, ab) = d(nb, nb) = n2d(b, b). Since b ≠ 0 and R is a domain, 
d(b, b) ≠ 0, and then n2 = 1, i.e., n = ±1. Hence, ab = ±b, and then (a ∓ 1)b = 0 and as b ≠ 0, a = ±1.

Theorem 2.10. Let R be a domain with involution ∗ and a ∈ R be a skew-Hermitian element. If ab = 
nb for some integer n and nonzero b ∈ R, then a = 0.

Proof. n.d(b, b) = d(nb, b) = d(ab, b) = d(b, a*b) = d(b, – ab) = d(b, – nb) = n.d(b, b). Since b ≠ 0 and R 
is a domain, d(b, b) ≠ 0 and then n = –n. It follows that n = 0, and hence a = 0.

Theorem 2.11. Let R be a ring with involution ∗ and a ∈ R.

(1) If a is a Hermitian element, then d(ab, b) is a Hermitian element for all b ∈ R.
(2) If d(ab, b) is a Hermitian element for some unit b ∈ R, then a is a Hermitian element.

Proof. 

(1) Let b ∈ R. Then d(ab, b) = d(b, a*b) = d(b, ab) = d(ab, b)*, and hence d(ab, b) is a Hermitian 
element.

(2) Since b is unit, b* is unit with (b*)−1 = (b−1)*. Now, b*ab = d(ab, b) = d(ab, b)* = d(b, ab) = 
(ab)*b = b*a*b, and then a = a*, and hence a is a Hermitian element.

3. Norm and Orthogonality

In this section, we define the concept of the norm of an element and the concept of orthogonality 
between two elements in R, and finally, we define an order on the elements of R and study some 
properties.

Definition 3.1. Let R be a ring with involution ∗. Let a ∈ R. Then the norm of a is denoted by ∥a∥d 
and is defined by ∥a∥d = d(a, a).

Theorem 3.2. Let R be a ring with involution ∗ and a ∈ R. Then the following hold:

(1) Suppose that ∥a∥d is Hermitian and R is a domain. Then ∥a∥d = 0 if and only if a = 0.
(2) ∥na∥d = n2∥a∥d for any integer n.
(3) ∥a∥d = ∥a*∥d if and only if a is Normal.
(4) If R is a domain, then ∥ab∥d = ∥a*b∥d for all b ∈ R if and only if a is normal.

Proof. 

(1) The result holds from Lemma 2.1 (1).
(2) The result holds from Lemma 2.1 (9) and (10).
(3) ∥a∥d = ∥a*∥d if and only if d(a, a) = d(a*, a*) if and only if a*a = aa* if and only if a is Normal.
(4) The result holds from Theorem 2.4.

Theorem 3.3. Let R be a ring with involution ∗ and a, b ∈ R. Then

(1) ∥a + b∥d + ∥a − b∥d = 2∥a∥d + 2∥b∥d.
(2) ∥a + b∥d − ∥a − b∥d = 2d(a, b) + 2d(b, a).

Proof. ∥a + b∥d = d(a + b, a + b) = d(a, a) + d(a, b) + d(b, a) + d(b, b) = ∥a∥d + d(a, b) + d(b, a) + ∥b∥d 
and similarly, ∥a − b∥d = ∥a∥d − d(a, b) − d(b, a) + ∥b∥d. Then ∥a + b∥d + ∥a − b∥d = 2∥a∥d + 2∥b∥d and 
∥a + b∥d − ∥a − b∥d = 2d(a, b) + 2d(b, a).
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Theorem 3.4. Let R be a ring with involution and a ∈ R. Then ∥a∥d = 1 if and only if a is Unitary.

Proof. Suppose that ∥a∥d = 1. Then d(a, a) = a*a = 1. Now (a*a)* = 1*. Then (a*)*a* = aa* = 1* = 1. 
Thus a is Unitary. Conversely, a*a = 1. and d(a, a) = a*a = 1. Thus ∥a∥d = 1.

Definition 3.5. Let R be a ring with nonzero unity 1 and involution ∗. Let a, b ∈ R. Then a is said to 
be orthogonal to b if d(a, b) = 0. The set of all elements in R that are orthogonal to a is denoted by a⊥ 
that is a⊥ = {b ∈ R : d(a, b) = 0}.

Remark 3.6. Clearly, 0 a⊥, i.e., a⊥ is a non-empty set. Also, if b a⊥, then d(a, b) = 0 and then d(b, a) = 
d(a, b)* = 0* = 0.

Theorem 3.7. Let R be a ring with involution ∗, a ∈ R and b, c ∈ a⊥. Then b + c ∈ a⊥ and nb ∈ a⊥ for 
any integer n. In particular, a⊥ is an additive subgroup of R.

Proof. d(a, b + c) = d(a, b) + d(a, c) = 0 + 0 = 0 and then b + c ∈ a⊥. Let n be an integer. Then d(a, nb) = 
n.d(a, b) = n.0 = 0, and then nb ∈ a⊥.

Theorem 3.8. Let R be a ring with involution ∗ and a ∈ R. Then ∥a + b∥d = ∥a − b∥d for all b ∈ a⊥.

Proof. The result holds from Theorem 3.3 (2) and Remark 3.6.

Definition 3.9. Let R be a ring with involution ∗ and a, b ∈ R. Then we write a ≤ b if a*a = a*b.

Theorem 3.10. Let R be a domain with involution ∗ and a, b ∈ R such that a ≤ b and b ≤ a. Then 
a = b.
Proof. Since a ≤ b, a*a = a*b and since b ≤ a, b*b = b*a. Then ∥a − b∥d = ∥a∥d − d(a, b) − d(b, a) + 
∥b∥d = a a − b a − a b + b b = a b − b a − a b + b a = 0 and then by Theorem 3.2 (1), a − b = 0, i.e., a = b.

Theorem 3.11. Let R be a ring with involution ∗ and a ∈ R. Then

(1) 0 ≤ a for all a ∈ R.
(2) a ≤ 1 if and only if a is Hermitian and idempotent.

Proof. 

(1) Since 0*0 = 0 = 0*a, 0 ≤ a.
(2) Suppose that a ≤ 1. Then a*a = a*.1 = a*, and then a = (a*)* = (a*a)* = a*a = a*. Hence, a is 

Hermitian, and then a = a* = a*a = aa = a2. Hence, a is idempotent. Conversely, a*a = aa = 
a2 = a = a* = a*.1 that means a ≤ 1.

Theorem 3.12. Let R be a ring with involution ∗ and a, b ∈ R such that a ≤ b. Then c*ac ≤ c*bc for all 
Unitary c ∈ R.

Proof. Since a ≤ b, a*a = a*b. Let c ∈ R be an Unitary element. Then (c*ac)*(c*ac) = c*a*c.c*ac = 
c*a*ac = c*a*bc = c*a*cc*bc = (c*ac)*(c*bc) that means c*ac ≤ c*bc.

The next example shows that if a ≤ b, then it is not necessary to have a2 ≤ b2.

Example 3.13. Consider R = M2(R), 1 1
0 0

A  
=  
 

 and 1 1
2 2

B  
=  
 

. Since 
1 1* *
1 1

A A A B 
= = 
 

, A ≤ 

B. However, 2 1 1
0 0

A  
=  
 

 and then 2 2 1 1( ) * .
1 1

A A  
=  
 

 On the other hand, 2 3 3
6 6

B  
=  
 

and then 

2 2 3 3( )*
3 3

A B  
=  
 

. Note that (A2)*A2 ≠ (A2)*B2 that means A2 ≰ B2.

Theorem 3.14. Let R be a ring with involution * and a, b ∈ R such that a ≤ b. If a is Hermitian, then 
a2 ≤ b2.
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Proof. Since a ≤ b, a*a = a*b and since a is Hermitian, a2 = ab. So, (a2)*b2 = a2b2 = a(ab)b = a(a2)b = 
a3b = a2(ab) = a2(a2) = (a2)*a2 that means a2 ≤ b2.

4. Inner Rings

In this section, we establish the concept of inner rings and examine several properties.

Definition 4.1. A ring R is said to be an inner ring if there exists a function ⟨−, −⟩ : R × R → C satis-
fies the following:

(1) ⟨a, a⟩ ≥ 0 for all a ∈ R, and ⟨a, a⟩ = 0 if and only if a = 0.
(2) ⟨a + c, b⟩ = ⟨a, c⟩ + ⟨b, c⟩ for all a, b, c ∈ R.
(3) ⟨αa, b⟩ = α⟨a, b⟩ for all a, b ∈ R, and α ∈ Z.
(4) ⟨a, b⟩ = ,  b a  for all a, b ∈ R.

This function is called inner product on R. Moreover, R is said to be a real inner ring if ⟨−, −⟩ : R × R 
→ R.

Example 4.2. Consider R = Mn(C). Then ⟨A, B⟩ = tr(A*B) is an inner product on R, and so R is an 
inner ring.

Example 4.3. Consider R = Cn. Then 
1

,
n

i i
n

a b a b
=

〈 〉 = ∑  is an inner product on R, and so R is an inner 
ring.

Example 4.4. Let Rbe the ring of all continuous real-valued function on [a, b]. Then 

( ), ( ) ( ) ( )
b

a

f x g x f x g x〈 〉 = ∫  is an inner product on R, and so R is an inner ring.

Example 4.5. Let R be the ring of all continuous complex-valued functions on [a, b]. Then 

( ), ( ) ( ) ( )
b

a

f x g x f x g x〈 〉 = ∫  is an inner product on R, and so R is an inner ring.

Remark 4.6. Since , ,a a a a〈 〉 = 〈 〉, we have ⟨a, a⟩ ∈ R and ⟨a, a⟩ ≥ 0. Thus, we can talk about ,a a〈 〉 .

Definition 4.7. Let R be an inner ring and a ∈ R. Then the norm of a is defined as ∥a∥ = ,a a〈 〉 .

Theorem 4.8. Let R be an inner ring, a, b ∈ R and α ∈ Z. Then

(1) ∥a∥ ≥ 0, and ∥a∥ = 0 if and only if a = 0.
(2) ∥αa∥ = |α|∥a∥.

Proof. 

(1) ∥a∥ = ,a a〈 〉  ≥ 0, and ∥a∥ = 0 if and only if ,a a〈 〉  = 0 if and only if ⟨a, a⟩ = 0 if and only if 
a  = 0.

(2) 2 2, , ,a a a a a a a aα α α α α α= 〈 〉 = 〈 〉 = 〈 〉 = .

Definition 4.9. Let R be an inner ring. Then the distance between a, b ∈ R is defined as D(a, b) =  
∥a − b∥.

Theorem 4.10. Let R be an inner ring and a, b ∈ R. Then

(1) D(a, b) ≥ 0, and D(a, b) = 0 if and only if a = b.
(2) D(a, b) = D(b, a).
(3) D(αa, αb) = |α|D(a, b), for all α ∈ Z.
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Proof.

(1) D(a, b) = ∥a − b∥ = ,a b a b〈 − − 〉  ≥ 0, and D(a, b) = ∥a − b∥ = 0. Then ,a b a b〈 − − 〉  = 0 if and 
only if ⟨a – b, a – b⟩ = 0. So a – b = 0. Thus, a = b.

(2) D(a, b) = ∥a − b∥ = ∥−1(b − a)∥ = |−1|∥(b − a)∥ = ∥(b − a)∥ = D(b, a).
(3) D(αa, αb) = ∥αa − αb∥ = ∥α(a − b)∥ = |α|∥a − b∥ = |α|D(a, b).

The next example shows that it is not necessarily ∥a + b∥ = ∥a∥ + ∥b∥:

Example 4.11. Let R = R2 with inner product as in Example 4.3, a = (1, 2), b = (3, 4) ∈ R. Then ∥a∥ = 
,a a〈 〉  = 5 , ∥b∥ = ,b b〈 〉  = 5 , and ∥a + b∥ = ,a b a b〈 + + 〉  = 52 , and so 52 2 5≠ .

In the next result, we state Cauchy-Schwartz inequality in inner rings:

Theorem 4.12. Let R be an inner ring and a, b ∈ R. Then |⟨a, b⟩| ≤ ∥a∥∥b∥.

Proof. Let t ∈ Z. Then 0 ≤ ∥ta + b∥2 = ⟨ta + b, ta + b⟩ = ⟨ta, ta⟩ + ⟨ta, b⟩ + ⟨b, ta⟩ + ⟨b, b⟩ = |t2|⟨a, a⟩ + 
t⟨a, b⟩ + ,t a b  + ⟨b, b⟩ = t2∥a∥2 + 2tRe(⟨a, b⟩) + ∥b∥2 ≤ t2∥a∥2 + 2t|⟨a, b⟩| + ∥b∥2. Then 0 ≤ ∥ta + b∥2 ≤ 
t2∥a∥2 + 2t|⟨a, b⟩| + ∥b∥2, and so 0 ≤ t2∥a∥2 + 2t|⟨a, b⟩| + ∥b∥2. Then (2|⟨a, b⟩|)2 − 4∥a∥2∥b∥2 ≤ 0. So, 
|⟨a, b⟩|2 − ∥a∥2∥b∥2 ≤ 0. Thus, |⟨a, b⟩| ≤ ∥a∥∥b∥.

Remark 4.13. Clearly, the equality in Cauchy-Schwartz inequality in inner rings occurs if and only 
if b = αa, for some α ∈ Z.

Now, we are ready to state the triangle inequality in inner rings:

Theorem 4.14. let R be an inner ring and a, b ∈ R. Then ∥a + b∥ ≤ ∥a∥ + ∥b∥.

Proof. let a, b ∈ R. Then ∥a + b∥2 = ⟨a + b, a + b⟩ = ⟨a, a⟩ + ⟨a, b⟩ + ⟨b, a⟩ + ⟨b, b⟩ = ⟨a, a⟩+⟨a, b⟩+ 
⟨a, b⟩+⟨b, b⟩ = ∥a∥2 +2Re(⟨a, b⟩)+∥b∥2 ≤ ∥a∥2 +2|⟨a, b⟩|+∥b∥2. By Cauchy-Schwartz Inequality for 
Inner Ring, we have ∥a∥2 + 2|⟨a, b⟩| + ∥b∥2 ≤ ∥a∥2 + 2∥a∥∥b∥ + ∥b∥2 = (∥a∥ + ∥b∥)2. Thus ∥a + b∥ ≤  
∥a∥ + ∥b∥.

Theorem 4.15. let R be an inner ring and a, b, z ∈ R. Then D(a, b) ≤ D(a, z) + D(z, b), for all a, b, 
z ∈ R.

Proof. Let a, b, z ∈ R. Then ∥a – b∥ = ∥(a – z) + (z – b)∥ ≤ ∥ (a –  z) ∥ + ∥(z – b) ∥ = D(a, z) + D(z, b).

Definition 4.16. Let R be a real inner ring and a ≠ 0, b ≠ 0 ∈ R. Then the angle between a and b is  

θ ∈ [0, π] such that 1 ,a bcos
a b

θ −
 
  


〈



〉
= .

Example 4.17. Let R be the ring of all continuous real-valued functions on [a, b] with inner 

product as in Example 4.4 and let f (x) = x2, g(x) = x4 ∈ R. Then 
1

0

1( ), ( ) ( ) ( )
7

f x g x f x g x〈 〉 = =∫ , 

1 2
0

1( ) ( ), ( ) ( )
5

f x f x f x f x= 〈 〉 = =∫  and 
1 2
0

1( ) ( ), ( ) ( )
3

g x g x g x g x= 〈 〉 = =∫ . Then 1 3 5
7

cosθ −  
 
 

=  is 

the angle between f (x) and g(x).

Definition 4.18. let R be an inner ring. Then a, b ∈ R are said to be orthogonal if ⟨a, b⟩ = 0.

Theorem 4.19. Let R be an inner ring. Then the zero element is the only element that is orthogonal to 
every element in R.
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Proof. Let a ∈ R. Then ⟨0, a⟩ = ⟨0 + 0, a⟩ = ⟨0, a⟩ + ⟨0, a⟩. So, ⟨0, a⟩ = ⟨0, a⟩ −⟨0, a⟩ = 0. Thus, 0 is 
orthogonal to every element in R. Let a ∈ R such that a is orthogonal to every element in R. Then  
⟨a, b⟩ = 0 for all b ∈ R. Now choose a = b, then ⟨a, a⟩ = 0. Thus, ∥a∥2 = 0. and So, a = 0.

Now, we investigate the concept of inner rings with the involution:

Definition 4.20. Let R be an inner ring with involution ∗. Then a ∈ R is said to be ∗-inner element if 
⟨ax, y⟩ = ⟨x, a*y⟩, for all x, y ∈ R.

Example 4.21. Consider R = C2 with involution ∗ as in Example 1.4. And let 
1
1

a  
=  
 

. Then 
1*
1

a  
=  
 

, 

and so let x, y ∈ C2. Then 1 1 1 1

2 2 2 2

1 1, ,
1 1

x y x y
x y x y
          

〈 〉 = 〈 〉          
          

. Thus a is ∗-inner element.

Example 4.22. Consider R = C2 with involution ∗ as in Example 1.4. And let 
1
1

a  
=  − 

. Then 
1* ,
1

a  
=  − 

 

and so let x, y ∈ C2. Then 1 1
1 1 2 2

2 2

1 ,
1

x y
x y x y

x y
    

〈 〉 = −    −     
 and 1 1

1 1 2 2
2 2

1,
1

x y
x y x y

x y
    
〈 〉 = −    −    

. Thus a is 
∗-inner element.

Theorem 4.23. Let R be an inner ring with involution ∗ and a ∈ R be Hermitian ∗-inner element. If 
⟨ax, x⟩ = 0, for all x ∈ R, then a = 0.

Proof. Let a, x, y ∈ R. Then ⟨a(x + y), x + y) – ⟨a(x – y), x – y⟩ = 2⟨ax, y⟩ + 2⟨ay, x⟩, and then by assump-
tion 2⟨ax, y⟩ + 2⟨ay, x⟩ = 0, it follows that 2⟨ax, y⟩ = 2⟨ay, x⟩ for all x, y ∈ R. Choose y = ax, then ⟨ax, 
ax⟩ = –⟨a2x, x⟩ as a is Hermitian. So, 2⟨ax, ax⟩ = 0, for all x ∈ R, and then ax = 0, for all x ∈ R. Choose 
x = 1. Thus, a = 0.

Theorem 4.24. Let R be an inner ring with involution ∗ and a ∈ R be ∗-inner element. Then if ⟨ax, x⟩ 
is real number for some x ∈ R, then ⟨(a − a*)x, x⟩ = 0.

Proof. Let ⟨ax, x⟩ be real number for some x ∈ R. Then ⟨ax, x⟩ = ,ax x〈 〉  = ⟨x, ax⟩ = ⟨a*x, x⟩, then 0 = 
⟨ax, x⟩ −⟨a*x, x⟩ = ⟨ax − a*x, x⟩ = ⟨(a − a*)x, x⟩. Thus, ⟨(a − a*)x, x⟩ = 0.

Theorem 4.25. Let R be an inner ring with involution ∗ and a ∈ R be ∗-inner element. Then if a is 
Hermitian, then ⟨ax, x⟩ is real number, for all x ∈ R.

Proof. Let a ∈ R be Hermitian ∗-inner element. Then ⟨ax, x⟩ = ⟨x, ax⟩ = ,ax x . Thus ⟨ax, x⟩ is real 
number, for all x ∈ R.

Definition 4.26. Let R be an inner ring, let a ∈ R be Hermitian ∗-inner element. Then

(1) a is called positive semi definite element if ⟨ax, x⟩ ≥ 0, for all x ∈ R.
(2) a is called positive definite element if ⟨ax, x⟩ > 0, for all x ∈ R − {0}.

Clearly, every positive definite element is positive semi definite element. The next example shows 
that a positive semi definite element is not necessarily positive definite element:

Example 4.27. Let R = Z4 × Z4 with involution ∗ as in Example 1.4. Now, 
1
1

a  
=  
 

 is  positive semi defi-

nite element since for all 1
4 4

2

x
x

x
 

= ∈ × 
 

  , 1 1 2 2
1 1 2 2 1 2

2 2
, , ( ) ( ) | | | | 0

x x
ax x x x x x x x

x x
   

〈 〉 = 〈 〉 = + = + ≥   
   

. But 

a is not positive definite element since for 4 4
2
2

x  
= ∈ × 
 

  , ⟨ax, x⟩ = 0.

Clearly, every positive semi definite element is Hermitian element. The next example shows that 
a Hermitian element is not necessarily positive semi definite element:
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Example 4.28. Let R = C2 with involution ∗ as in Example 1.4. Now 
1
1

a  
=  − 

 then 
1*
1

a  
=  − 

. Thus a 

is Hermitian. But, a is not  positive element, Since for 20
1

x  
= ∈ 
 

 , 
0 0, , 1.
1 1

ax x    
〈 〉 = 〈 〉 = −   −   

Theorem 4.29. Let R be an inner ring. If a and b ∈ R are positive semi definite element (positive defi-
nite element), then a + b is positive semi definite element (positive definite element).

Proof. Since a and b are positive semi definite elements, then a and b are Hermitian, and then a + b 
is Hermitian. Now let x ∈ R. Then ⟨(a + b)x, x⟩ = ⟨ax, x⟩ + ⟨bx, x⟩. Now we have ⟨ax, x⟩ ≥ 0 and ⟨bx, x⟩ 
≥ 0. Thus, a + b is positive semi definite element. Now for positive definite element since a and b are 
positive definite elements, then a and b are Hermitian, and then a + b is Hermitian. Now let x ∈ R. 
Then ⟨(a + b)x, x⟩ = ⟨ax, x⟩ + ⟨bx, x⟩. Now we have ⟨ax, x⟩ > 0 and ⟨bx, x⟩ > 0. Thus, a + b is positive 
definite element.

Theorem 4.30. Let R be an inner ring with involution ∗ and a ∈ R be ∗-inner element. Then the fol-
lowing are equivalent:

(1) a is Unitary.
(2) ⟨ax, ay⟩ = ⟨x, y⟩, any all x, y ∈ R.
(3) ∥ax∥ = ∥x∥, for any x ∈ R.

Proof. (1 ⇒ 2) Let x, y ∈ R. Then ⟨ax, ay⟩ = ⟨x, a*ay⟩ = ⟨x, 1y⟩ = ⟨x, y⟩. 
(2 ⇒ 3) Let x ∈ R. Then ∥ax∥2 = ⟨ax, ax⟩ = ⟨x, x⟩ = ∥x∥2 by (2). 
(3 ⇒ 1) For x ∈ R, ⟨ax, ax⟩ = ∥ax∥2 = ∥x∥2 = ⟨x, x⟩, and then 0 = ⟨ax, ax⟩ − ⟨x, x⟩ = ⟨a*ax, x⟩ − ⟨x, x⟩ = 
⟨(a*a − 1)x, x⟩ = 0. Then (a*a − 1) is Hermitian, and then by Theorem 4.23, a*a − 1 = 0, then a*a = 1, 
i.e., a is Unitary.

Theorem 4.31. Let R be an inner ring with involution ∗ and a ∈ R be ∗-inner element. Then a is 
Normal if and only if ∥ax∥ = ∥a*x∥, for all x ∈ R.

Proof. Suppose that a is Normal. Let x ∈ R. Then ∥ax∥2 = ⟨ax, ax⟩ = ⟨a*ax, x⟩ = ⟨a*x, a*x⟩ = ∥a*x∥2. 
Thus, ∥ax∥ = ∥a*x∥. Conversely, for all x ∈ R, ⟨ax, ax⟩ = ∥ax∥2 = ∥a*x∥2 = ⟨a*x, a*x⟩, then 0 = ⟨ax, ax⟩−
⟨a*x, a*x⟩ = ⟨a*ax, x⟩− ⟨aa*x, x⟩ = ⟨a*ax − aa*x, x⟩ = ⟨(a*a − aa*)x, x⟩. Then (a*a − aa*) is Hermitian, 
and then by Theorem 4.23 a*a − aa* = 0, then a*a = aa*, i.e., a is Normal.

Conclusion

In this article, we extended several known results from the ring of all n × n matrices with complex 
entries to any ring R with nonzero unity 1 and involution ∗. We introduced various results concern-
ing Hermitian, skew-Hermitian, Unitary and Normal elements of R. Also, we proposed two versions 
of the norm of an element and the orthogonality of two elements of R. Furthermore, we defined an 
order on the elements of R and examine some properties. Finally, we established the concept of inner 
rings and study some of its properties. As a proposal for future work, we are going to establish var-
ious inequalities on the norm of elements of R under specific conditions. In fact, we will investigate 
the two proposed versions of the norm, and we will examine which one will be more suitable.
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