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Abstract
The paper elucidates two distinct techniques for conducting a comparative study aimed at ascertain-
ing the transient availability of a repairable system. The use of Markov modeling forms the basis of 
this investigation strategy. The set of differential equations in the current study is formulated, and 
they are then solved using the Laplace transform method and the matrix method, respectively. To 
help with a clearer understanding of the system, these approaches are subjected to a thorough eval-
uation and comparative study. Availability guarantees that critical processes, failure analysis and 
services continue to run smoothly, which is essential for business continuity. In sectors like finance, 
public health, and telecommunications, this is especially crucial. Productivity and availability are 
directly related. Systems that are continuously available allow workers and resources to be used to 
their greatest potential, increasing productivity and efficiency.
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1. Introduction and Literature Review

Engineering systems are a complicated structure that is closely tied to the growth and advancement 
of modern civilization. Systems for engineering are carefully created to guarantee that they will func-
tion consistently for the duration of their expected service life. These systems include a broad range 
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of areas, such as advanced machinery, vital infrastructure networks, and industrial processes. Given 
the inherent danger of system degradation, it is critical to carefully monitor how system availability 
changes over time. Their efficacy and efficiency have a significant impact on people’s everyday lives 
and the economy. However, it is crucial to recognize that engineering systems are prone to deteriora-
tion over time due to the influence of external influences and operating demands. This deterioration 
manifests as a gradual decline in their overall performance, or, in more severe instances, as complete 
system failure. In practice, a system or unit can traverse an array of transitional phases, each marked 
by a distinctive probability of occurrence, lying on the spectrum between optimal functionality and 
complete failure.

It is important to remember that severe breakdowns in production systems can have disastrous 
effects that extend well beyond the economy and pose serious risks to human welfare and the envi-
ronment. Consequently, it is essential to proactively eliminate significant failure modes as soon as 
possible, ideally in the design stage, as doing so is far less expensive than dealing with these problems 
in the manufacturing or testing phases.

The concepts of availability and reliability are crucial in the domains of technology, engineering, 
and research. Researchers frequently examine and measure these factors in order to determine how 
well systems, products, or services operate and are reliable.  Researchers in these domains strive 
to comprehend the constraints and possible modes of failure of systems, devise tactics to augment 
reliability and availability, and use these conclusions to enhance the comprehensive efficacy and 
user contentment with the commodities or amenities under evaluation. The concept of redundancy 
is introduced for improving the reliability in the systems. The reliability of a standby system with 
repair has been shown by Jacob Cherian et al. [1]. The machine repair problem with spares, reneg-
ing, additional repairman, and two types of failure was examined by Jain et al. [2]. Lisnianski  
et al. [3] introduced a method for reliability optimization for system with time redundancy. Csenki [4] 
investigated performance measures for semi-markov dependability models and mentioned how these 
measures can be determined as solutions of certain systems using continuous time parameter. Jain 
and Maheshwari [5] provided a transient study of a redundant repairable system with additional 
repair. Reliability research in both series and parallel configurations has been widely recognized as 
a standard approach that facilitates the planning and organization of complex repairable systems’ 
operating and maintenance operations (Barabady et al. [6]). Li and Ni [7] developed a maximum like-
lihood estimation technique that takes into account the distinction between flawless and imperfect 
maintenance work-orders in order to discover estimated parameters based on the operational data 
of manufacturing systems. A comprehensive approach was presented by Doguc and Marquez [8], 
which makes use of historical information about the system that is to be represented as a BN and 
offers effective methods for automating the creation of the BN model and estimating the reliability 
of the system. El-Damcese and Temraz [9] proposed a technique for determining repairable parallel 
system availability using Markov models. Chybowski [10] used a Boolean function approach to study 
the reliability behavior of a complicated engineering system that links three subsystems in parallel 
redundancy.  A computed and implemented approach based on the Disjoint Sum of Product (DSOP) 
algorithm was given by Bourezg and Meglouli [11]. In order to assess reliability indices and the costs 
of various substation configurations, the method was used to estimate the reliability expression of 
a substation. Earth pressure balance tunnel boring machines (EPB-TBMs) used in urban tunnel-
ing projects were covered by Khoshalan et al. [12]. It has been demonstrated that the mechanical 
subsystem with the highest failure frequency has the lowest reliability and maintainability after 
the reliability and maintainability functions for each subsystem were calculated. James Li [13] com-
pared active redundancy against standby redundancy using a markov modeling from a reliability 
point of view. A repairable system with M major components, S spare components, and a repairman 
was studied by Yang and Tsao [14]. They examined the mean-time-to-failure (MTTF) and reliability 
function based on the Laplace transform approach, and they utilized the matrix-analytic method to 
compute the steady state availability. The mining sector uses equipment including haul trucks, load-
ers, dozers, shovel-dumpers, and draglines. These are more complicated, repairable systems that are 
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employed in very difficult working conditions, according to Saurabh Vashistha et al. [15]. RAM study 
of the material hauling system in an earth pressure balance tunnel boring machine (EPB-TBM) was 
conducted by Ahmadi et al. [16]. However, increasing the system’s availability might contribute to its 
increased reliability and maintainability. Ensuring the availability of complex systems at an elevated 
level should need the design of systems with better availability, system components, or both. When 
using these tactics to increase the system’s availability or reliability, decision-makers must carefully 
take into account both the real business needs and the quality criteria. Therefore, while keeping in 
mind the competitive environment, the behavior of such systems may be examined in terms of their 
availability, reliability, and maintainability. 

Additionally, earth pressure balance tunnel boring machines were explored by Agrawal et al. [17]. 
His research aims to produce a markov diagram showing the different EPBTBM subsystems. It is pos-
sible to generate a steady state availability expression with a constant failure and repair rate. In order 
to increase the system’s overall availability and reliability and that of its subsystems in particular—a 
preventative maintenance (PM) strategy has been established. In order to assess the Steady State 
Availability of the system, Patil et al. [18] presented a methodology for Time-Between-Failure (TBF) 
and Time-To-Repair (TTR) data analysis, combined with Markov chains. They also identified the 
critical sub-systems from reliability, maintainability, and availability point of view. In a case study, 
Koohsari et al. [19] provided the findings of a critical examination of the RAM of Earth pressure bal-
ance machines (EPBMs). Their research also showed that overall availability might be improved by 
anticipating the right maintenance and making plans that are appropriate. Antosz et al. [20] focused 
on the availability and reliability of engineering systems for contemporary businesses, particularly 
in light of industry demands and difficulties. RAM engineering is a well-established topic of study 
that has expanded into several other engineering specialties in addition to software and mechanical 
engineering. In this context, RAM analysis is one of the top methods for increasing project utilization 
in oil and mining engineering because of its machinery-based character. A thorough analysis of the 
many statistical methods that have been used for fault prediction and reliability from both theoretical 
and practical viewpoints was proposed by Odeyar et al. [21]. Eliwa et al. [22] analyzed the reliability 
of constant, partially accelerated life tests utilizing progressive first failure type-II censored data 
based on the Lomax distribution. In contrast, Alburaikan et al. [23] examined mathematical models 
for evaluating reliability.

High availability is desirable in many applications, especially essential ones where downtime might 
have major effects, such as data centers, power plants, medical equipment, and transportation systems. 
Reliability engineering solutions aim to improve and maintain high availability levels in such systems 
by minimizing downtime and addressing errors effectively. Two different methods are used, namely 
in the field of reliability engineering, to evaluate and ascertain the availability of systems: the matrix 
technique and the Laplace transform method. The study and solution of dynamic systems, such as 
continuously changing mechanical and electrical circuits, are the primary applications of the Laplace 
transform approach. It is a mathematical technique that may be applied to systems that are defined by 
differential equations to ascertain how systems respond over time. However, the matrix technique is 
used to look at and figure out a system’s steady-state availability, especially when it comes to reliability 
study. It focuses mainly on static or quasi-static systems, where the primary issue is the system’s ten-
dency to operate at a specific moment. In this case, the Laplace transform approach is contrasted with 
the matrix method to determine the availability of the complex system in a time dependent condition.

2. Mathematical Understanding of Availability

Availability is a measure used in reliability engineering to assess the operational performance 
and reliability of a system, part, or piece of machinery. It gauges how well a system is functioning 
and ready to perform its assigned function when called upon. It is the likelihood that the system  
will function successfully at any given moment in time when operational, active repair, logistical, and 
administrative time are all included in the overall period.
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Availability Operable time
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MTBF is mean time between failures and MTTR is mean time to repair.
Availability Av(t) expresses the probability of being completely operable at any given time.
The interval availability Avi(t) for the interval [0, T] is defined by 
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3. System Description

3.1. The System

The complex system consists of following units in series. 
Q: consists of one unit system subjected to major failures only.
R: consists of one unit system subjected to major failures only.
Si: (i = 1, 2, 3) these are three different units.
U: consists of one unit system subjected to major failures only.
V: consists of one unit system subjected to major failures only.
W: consists of one unit system and works in reduced capacity.

The following notations and assumptions are employed for the purpose of mathematical analysis of 
performance of the complex system.

3.2. Notations

Q, R, Si, U, V, W: represent good working states of the complex system. (i = 1, 2, 3).
q, r, si, u, v: represent failed states of the complex system. (i = 1, 2, 3).
w: represent reduced state of the complex system.
ai: respective mean constant failure rates of units Si, (i = 1, 2, 3).
a4: mean constant failure rate of unit W.
aj: respective mean constant failure rates of units Q, R, U, and V, (j = 5, 6, 7, 8).
bi: respective mean constant repair rates of units Si, (i = 1, 2, 3).
b4: mean constant repair rate of unit W.
bj: respective mean constant repair rates of units Q, R, U, and V, (j = 5, 6, 7, 8).
Pi(t): state probabilities that the system is in ith state at time t.
s: Laplace-transform parameter.

3.3. Assumptions

·	 All the units are initially operating and are in good state.
·	 Each unit has two states: good and failed state. Unit W works at reduced capacity on transit to 

degraded state.
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·	 Each unit is as good as new after repair.
·	 The failure rates and repair rates of all units are taken constant.
·	 Failure and repair events are statistically independent.
·	 Whenever a unit fails its repair begins immediately.

4. Formulation of Transition Diagram

Notations, symbols and assumptions are employed for representing the states of the subsystems. 
Figure 1 shows the transition diagram of the complex system consisting of six components with one 
component working with reduced capacity. The transition diagram defines the transitions of sub- 
system’s one state to another.

Figure 1: Transition Diagram.

5. Mathematical Model Using Markov Approach

5.1. Markov Approach

The system’s transient availability is estimated using the Markov technique. This method is used 
in situations where the rates of failure and repair remain constant.  A process known as a Markov 
process characterizes the behavior of the system state if the probability rule of its future state of exis-
tence depends solely on the state it is in and not on how the system obtained there. The future in a 
Markov approach is not affected by the past. It is an effective method for determining the availability 
(Av(t)) of the repairable system, considering constant failure and repair rates. Hence, the basis of 
Markov analysis is mathematical modeling, where the failure states depend only on the current state 
at that particular moment. 
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5.2. Transient State

The laws of probability and transition diagram are used, and equations (1)–(16) are developed. The 
differential-difference equations obtained from the state transition diagram using Mnemonic rule at 
time (t + Dt) are:
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Dividing both sides by Dt, we get:

P t t P t
t

P t P t P0 0
1 2 3 4 5 6 7 8 0 1 4

( ) ( ) [ ] ( ) ( )+ -
= - - - - - - - - + +

D
D

a a a a a a a a b 22 1

3 2 4 3 5 5 6 6 7 7 8 8

( )

( ) ( ) ( ) ( ) ( ) ( )

t

P t P t P t P t P t P t

b

b b b b b b+ + + + + +

Taking Dt ® 0
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6. Solution of Differential Equations

6.1. Laplace Transform Method

When examining systems with intricate reliability features, the Laplace transform approach is very 
helpful since it offers a mathematical foundation for simplifying the issue. It enables you to evaluate 
system availability under various circumstances by accounting for elements like repair rates, failure 
rates, and other relevant metrics.

Solving above equations after taking Laplace transforms of equations (1)–(16), the following Laplace 
transforms of state probabilities are obtained:
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Taking Laplace transform of equation (1), using in initial conditions and relations (17), we get:
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Laplace transform of Availability function Av(t) is given by:
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where P0(s) is given by equation (18)
Inversion of Av(s) gives the Availability function Av(t).

6.2. Matrix Method

Redundancy and repair procedures are two examples of complex systems with many states and tran-
sitions that may be well-modeled utilizing the matrix technique with Markov analysis. It offers a 
methodical approach to computing reliability indicators such as availability. However, because calcu-
lating the balancing equation for bigger systems can get rather difficult, it could be necessary to use 
mathematical software tools or programming to carry out the computations.

Taking matrix, B, the matrix of coefficients of probabilistic states, the differential equations may 
be written as;
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Equation is a matrix linear differential equation in variable E(k,t). Solution of the equation is 
E k t e K iDt( , ) ......( )- = , for some constant K.
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Taking particular value t = 0 as the initial condition, we get 
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Note that the identity (iii) is a column matrix, Probability of different stages are;
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There are two working states of the complex system. Since P0(t) and P1(t) are the only working states 
of the system, 
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7. Conclusion

In this paper, the application of Markov process in finding the Availability of the complex system 
has been discussed. A transition diagram shows the relationship between the system and its units. 
A complicated system’s availability can be ascertained using a variety of data analysis methods and 
mathematical models. Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are 
some standard metrics for monitoring availability. You can compute these metrics and learn more 
about the availability of the system by gathering data on system breakdowns, downtime, and repair 
times. The differential equations for the system are converted into the Laplace domain using the 
Laplace method, allowing algebraic operations to be carried out to find the system’s response. The 
time-domain solution is then obtained by applying the inverse Laplace transform. Laplace transforms 
are often not used for availability calculations or steady-state reliability analysis; instead, they are 
mostly utilized for dynamic system analysis. The matrix approach uses a collection of matrices and 
mathematical equations to depict the reliability structure of the system. The steady-state availabil-
ity, or long-term probability of the system being operational, is found by solving these equations. The 
matrix approach was created expressly to analyze availability and reliability of systems. It works 
great for simulating intricate systems, such multi-component repairable systems.

In conclusion, there are differences between the applications of the Laplace transform method and 
the matrix method in the engineering field. For the analysis of time-dependent behavior in dynamic 
systems, the Laplace transform approach is utilized, whereas the matrix method is designed especially 
for steady-state reliability and availability analysis in static or quasi-static systems. Availability has 
advantages for many facets of operations and company, such as competitive advantage, cost-effective-
ness, customer happiness, and dependability. For many organizations, achieving high availability is 
a strategic objective that can be attained through appropriate planning, maintenance, and reliability 
engineering techniques.

8. Discussion

Understanding availability in a complex system is essential to evaluating its performance and depend-
ability. The frequency with which a system is up and ready to carry out its intended tasks is measured 
by its availability. Determining availability is crucial for a number of reasons in complex systems, 
including data centers, transportation networks, industrial plants, and healthcare facilities. 
·	 Reliability Analysis: Calculations of availability aid in the reliability evaluation of complicated 

systems. Understanding the system’s availability frequency can help you spot any possible defi-
ciencies and prospective opportunities for development. 



Zaidi Z, Results in Nonlinear Anal. 7 (2024), 9–20 19

·	 Risk Prevention: Analysis of availability is useful in risk management. It can support the identi-
fication of possible hazards, the creation of mitigation plans, and the establishment of emergency 
response protocols to preserve high availability in vital systems.

·	 Cost Reduction: Availability analysis can identify areas that may require investments in order to 
increase reliability, but it can also point out redundant information that can be removed in order 
to save operating expenses.

·	 Downtime Reduction and Performance Optimization: By identifying the reasons behind break-
downs in systems, you can focus on areas where downtime may be minimized and operational 
efficiency can be increased. The efficiency of a complicated system can be maximized by using 
availability measurements to find areas that require improvement and bottlenecks. 

·	 Business Continuity: Keeping sophisticated systems that are vital to corporate operations highly 
available is crucial for maintaining business continuity. Assessments of availability can help 
direct business continuity and catastrophe recovery plans. System availability is subject to strin-
gent restrictions and requirements in many businesses, particularly in the energy, healthcare, 
and financial sectors. For compliance, an accurate measurement of availability is necessary.

·	 Predictive Maintenance: Predictive maintenance techniques can be put into practice using avail-
ability data. Through the process of tracking the availability of specific subsystems or compo-
nents, you may reduce unplanned downtime and arrange maintenance during the most efficient 
period.

·	 Decision Making: Decision-makers can use availability data to determine whether to spend 
money on redundancy, backup systems, or system enhancements in order to reach desired avail-
ability levels.

In the final analysis, performance, risk management, cost optimization, and reliability all depend on 
a complex system’s capacity to locate availability. It helps businesses to make wise choices and guar-
antee that their systems fulfil contractual and operational requirements.
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