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Abstract

The technique to broaden the scope of fixed point theory is to extend the class of spaces that have
stronger conceptual frameworks than metric spaces. Therefore, this paper explores the introduction
of novel metric spaces, namely, Branciari suprametric spaces, and investigates some of its fundamen-
tal topological properties. An illustration is provided to validate the newly defined idea of Branciari
suprametric spaces. Further two intriguing, fixed point results are proved, and a corollary is presented
as an implication of our main result. The following is a specification of the analogue of the rectangle
inequality in Branciari suprametric spaces d,(7,1) <d,(t,v)+d,(v,0)+d,(0,0)+ ud,(t,v)d,(v,0)d,(o,1) for
all T#v,v#0 and o #1. Furthermore, by employing the results obtained, the present study intends
to provide an appropriate solution for the nonlinear fractional differential equations of the Riemann-
Liouville type.
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1. Introduction and Preliminaries

Fixed point approaches, especially are being applied in domains that include biology, engineering,
chemistry, physics, game theory, and economics. In several disciplines of mathematics and computa-
tional science, the problems of the existence varied solutions to mathematical models relates to the
existence of a fixed point problem for a particular map. Therefore, in order a variety of scientific fields
across all areas rely substantially on the study of fixed points.

The development of fixed point theory was facilitated by the French mathematician Frechet’s idea
of metric spaces. In an attempt to improve the possibility of obtaining more generic fixed point results,
the conception of a metric space has undergone numerous approaches to be extended. In analysis,
the triangle inequality is among the most essential and effective inequalities. The triangle inequality
has been extended to varying generalizations that are satisfied by different distance functions. These
include the b-metric spaces by Czerwik [7], at which the triangle inequality equation is multiplied by
the constant b on the right side; the extended b-metric spaces by Kamran [23], from which the triangle
inequality equation is multiplied by the funtion 0(z,1) on the right side; and the generalized metric
spaces by Branciari [5], wherein the triangular inequality of metric spaces has been supplanted by a
new inequality that is referred to as rectangular inequality.

Furthermore, a significant number of new distance functions were developed by combining, easing,
or expanding some of the tenets of the already-existing distance functions with the objective to address
the growing uncertainty of practical applications. A number of articles (see [1, 11, 24—-27, 30] with the
cited works therein) have addressed fixed point theory for single-valued mappings throughout various
abstract spaces.

The idea of b-metric spaces was established by Czerwik [7] as follows:

Definition 1.1. [7] Let Y # @ and b > 1 be any real number. A function d, :Y xY —[0,00) is a b-metric
if and only if for each t,1,v €Y, the preceding conditions are satisfied:

1. d,(t,1) 20 and d,(r,1) =0 if and only if T =1;
2. d (t,1) =d,(1,7);
3. d,(t,1) < bld,(7,v)+d,(v,1)].
Then d, is said to be a b-metric on Y and (Y, d,) is called a b-metric space.
Rectangular metric spaces were initially developed by Branciari [5] with the following definition:

Definition 1.2. [5] Let Y # & and the mapping d, :Y xY —[0,) is a rectangular metric if and only
if the conditions listed below are fulfilled:

1. d,(r,1) 20 and d,(7,1) =0 if and only if T =1

2. d,(7,1)=d,@, 7);

3. dp(t,1)<d,(t,v)+d,(v,0)+d,(0,1), forall T,1e Y and all distinct v,oce Y \ {7,1}
Then (Y, d,) is said to be a rectangular metric space.

Recently, a modified triangular inequality was employed in the new metric known as suprametric,
originally presented by Maher Berzig [2], who additionally investigated several important aspects of
its topology. Following that, the author demonstrated that specific contraction maps in suprametric
spaces possess an unique fixed point if the space is complete or comprises a non-empty s-limit set. For
more current works on suprametric spaces, researchers can refer to the articles [3, 4, 28, 31].

The following gives the definition of suprametric space:

Definition 1.3. [2] Let Y be a nonempty set. A function is d :Y xY —[0,00) a suprametric if for all
T,1,v e Y, the following conditions hold:
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1. d (t,1) =0if and only if T =1;
2. d(t,1)=d,(1,7) for allT,1€Y;
3. d.(t,n)<d (t,v)+d,(v,1)+ ud (t,v)d,(v,1) for someconstant pe R".
Then d_is called a suprametric on Y and (Y, d ) is named a suprametric space.

Definition 1.4. [2] Let Y be a metric on Y and a be a positive real. Then d (t,1)=o(e’™ -1) is a

.. 1 .
suprametric with constant [ =— respectively.
o

On the other hand, Liouville and Riemann established the very first definition of fractional deriv-
ative at the culmination of the 19th century, however Leibniz and L’Hospital initially proposed the
idea of non-integer derivative and integral in 1695 as an interpretation of the standard integer order
differential and integral calculus. In practical terms, derivatives with fractional values provides an
ideal approach to articulate the memory and inherited qualities associated with various processes
and techniques. In recent years, the research on fractional differential equations has increased sig-
nificantly. In order to determine the existence of and distinctiveness of or the multiplicity of solutions
to nonlinear fractional differential equation boundary value problems, as well as to deal with other
problems involving nonlinear fractional differential equations, nonlinear analysis techniques, which
serve as the primary approach for accomplishing this, play a significant part in the investigations
within this field (see [8-10, 13-22, 27, 29, 32—-38] and the sources listed therein).

Incited by all of the works listed above, in the current study, we extend the works of Maher Berzig
[2] in Section 2 by setting up the idea of Branciari (or rectangular) suprametric spaces by present-
ing an example for the given metric. In Section 3, we establish several intriguing fixed point results
under varying contractive conditions. The boundary value problem of a class of fractional differential
equations consisting of the Riemann-Liouville fractional derivative is then examined in Section 4 by
employing the established fixed point result, with the goal of determining if such solutions exist and
whether they are unique.

2. Main Results

The present section explores the conception of Branciari suprametric spaces which is an appropriate
extension that encompasses suprametric spaces [2] and rectangular metric spaces [5].

Definition 2.1. Let Y be a nonempty set and pe R".A function d, :Y xY —[0,%) is called a Branciari
suprametric if it satisfies:

1. d,(t,1)=01if and only if T =1 for all T,1€Y;
2. d,(t,1)=d,1,7) for all T,1€ Y
3. dy(t,1) <d,(t,v)+d,(v,0) +d,(0,1) + ud,(t,v)d,(v,0)d,(0,1).

forall T,1eY and for all v,oc €Y each distinct from © and 1 respectively. The pair (Y, d,) is named a
Branciari suprametric space.

Definition 2.2. Let Y =N and x is a rectangular metric on Y which is given by
0, if t=1
K(7,1) =<3, if 1,1€{5,6} and T #1
1, if torig {5,6}andt #1
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Let d,:Y XY —[0,0) be defined by d,(r,1) =«x(r,1)(y + k(r,1)) where ¥ is a positive real number.

. . . . . 6
It is apparent that d; is a Branciari suprametric with the constant u=-—. Nevertheless,
14

we observe that (i) (Y,d,) is not a rectangular metric space for y=1 because of the fact that
d,(5,6)=12>d,(5,1)+d,(1,2) +d,(2,6) =6 (ii) (Y,d,) is not a suprametric space for y =3 owing to

the fact that d,(5,6) =18 > d,(5,2) + d,(2,6) + 3%d5(5,2)d3(2,6) =11.56.

Definition 2.3. Let (Y,d,) be a Branciari suprametric space. The set
B,(t,,n)=1eY :d,(t,,1) <71},

wherer, >0 and t,€Y is called an open ball of radius r, and center 7.

Definition 2.4. Let (Y,d,) be a Branciari suprametric space. A sequence {t,} in Y referred to as:
1. converges to T < for every € >0 thereis N=N(e)e N so that d(r,,7)<e forall p = N.

2. Cauchy < for every ¢ >0 there is N=N(e)e N so that d,(t,,7,) <e forall v,5 = N.

Definition 2.5. A Branciari suprametric space (Y,d,) is complete if and only if every Cauchy sequence
in Y is convergent.

3. Fixed Point Theorems on Branciari Suprametric Spaces

In this section, we establish two intriguing fixed point results depending on specific contractive con-
ditions in the conceptual framework of Branciari suprametric spaces.

Theorem 3.1. Let (Y,d,) be a complete Branciari suprametric space and G:Y —Y is a mapping
satisfying
d,(Gt,Gr)< gd,(t,1), for allT,1eY 3.1)

where g€ [0,1). Then the fixed point of G is unique.

Prof. For every 7,€Y, the iterative sequence {7,} is specified by 7, =G7,_,,9e N. Inequality (3.1)
yields
ds(t,,7,,,) =ds (Gt ,,GT,)
<gd,(r ,,7,) (3.2)

<d,(t,,,7,)

p+l

Similarly to that, we observe
)=dy (Gt ,,GT,,)
< gd, (7,17

dy(t, Too

(3.3)

p+l

<dy(7,,,7,,1)

Thereby, the sequences {d,(7,,7,.,)} and {d,(z,,7,,,)} are decreasing and with regard to all fixed inte-
ger k and for all y >k, it fulfils
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dy(1,,7,,,) < 8" dy (1,,7,,,) (3.4)
and
dy(t,,7,,,) < 8" d,(1,,T,,,). (3.5)

) =0. Consequently there exists ke N so that d, (7,,7,,) <1

n+1

This implies 1&2 d,(t,,7,,) = lnlg} d,(t,,7,,,

and d,(7,,7,,,) <1 for all p>k. In order to illustrate {7,} is Cauchy, we consider d,(z,,7,,,) in a pair

of distinct cases.
Case 1: We proceed by delving into an odd number represented as 3=2m+1, where m > 1, then the
following is derived from inequality (3.4):

dy(7,,7 )<dy(7,,7,,,) + dy(7 )+d, (T
+udy (7,,7,,)d5 (7,157,505 (T T o)
< g7 dy(1,,7,,) + 8y (1, T F A (T 00T ) (3.6)
g dy (T, 7)) 8" Ny (1,7, ) (T, 0T o)
<g g A+ ug g (T, T, )

p+2m+1 n+l? n+2 n+27 r]+2m+1)

where
d,(t )<d,(t

+ud,(t

)+d, (T
), (T
< g7, (1,1, ,) + 8 (7,7 ) + g (T,,,0T, )
+ug" P dy (1,7 )8 Py (T, T ) (T, 40T, )

<gn k+2+gn k+3+(1+lugn k+2 nk+3)d (T

n+27? n+2m+1 n+27 n+3 n+3? n+4)+d (Tn+4’ n+2m+1)

n+27? n+3 n+3? n+4 )d (Tn+4’ n+2m+1)

n+4 n+2m+1 )

Accordingly, the inequality (3.6) yields
dy(T,,Ty00) S8 + +(L+pg g ) dy (T, Ty 0m0)
<gF g+ (Lt ug g g + g
+(1 +ug” TN (T, Ty o))

r) k+1

n k+1 y-k+3

< g n k+1 + (1+ug n k+1)[gn—k+2 +gn—k+3]
+(1+ ug“ A+ ug g ) dy (T, T )
_g n k+1 +(1+‘ug2(1) k)+1)[gn k+2 +gn k+3]

+(1+‘ug2(n k)+1)(1+‘ug2(n k)+5)[gn—k+4 +gn—k+5]
+ (1 + Mgz(n—k>+1)(1 + ugz(“’k)*5)...(1 + ‘ugZ(r)—k)+4m—7)
[gn—k+2m—2 +gn—k+2m—1] +(1 +‘ug2(n—k)+1)(1 +‘ug
(1+‘ug2(n k)+4m- 7)(1 +lug2(n k)+4m-— 3)d (T

2(n-k)+5 )

p+2m? lj+2m+l)

:gn—k +gn—k+1 +Z[gn—k+2i +gn—k+2i+1]H(1+’ug2(n—k)+4j—3)
=1 j=l

+ H (1 + ‘ugZ(n—k)+4i—3 )gn—k+2md8 (Tk ,Tk+1)
i1



Zubair S.T., et al. Results in Nonlinear Anal. 7 (2024), 80-93 85

Considering the fact that ge [0,1), it implies

m—1 i m
dy(T,, 7,00 ) S8 +8 g7 ) [ + 8™ ]H A+ug"?)+gm ™ Z A+ug™™) 3.7)

i=1

Let W=(g*+g*" 1+ug’?). By ratio test, W converges, as hm (<1 and ge[0,1
(gg)]_[(ug)y 3 g |W ge[0,1).

j=1 i=1 i

Equation (3.4) thus leads to the conclusion that d,(z ) tends to zero as »,m tend to infinity.

n? Tn+2m+1

Case 2: Now, suppose an even number represented by 3=2m, where m > 1, then the following is
obtained from inequalities (3.4) and (3.5):

dy(@,,7,,) S dy(T,,T,.,) +dy (T )+d,(c
+ud,(T,,7,,,)ds (T 55T, )5 (T, 50T, o)
<87 dy (T, T, ,,) + 8"y (T, 1) + g (T,507, ) (3.8)
+ug" dy (1,,7,,,)8" P (7, Ty ) (T, 50T, 0m)
<+ g (4 ug g Ay (T, 50T, 00 )

n+27? n+3 n+37? n+2m)

where
d,(t )<d,(t

+ud,(t

)+d, (T
)d,(t
< g™ d,(r,,1,,,) + &8, (,,T,,,) +d 5 (T Toiom)
+ug" ™ d, (t,,7,.,)8" ' dy(1,,7,.,,)ds (T
<g g Qg g A, (x

n+3? n+2m n+3? n+4 n+47 n+5)+d (Tn+5’ r)+2m)

n+3? n+4 n+4’Tn+o)d (Tn+5’ n+2m)

ye52 Tyezm)
9552 Tyezm)
Accordingly, the inequality (3.8) yields
dy(T,,7,,,,) S + &7 + L+ ug ™ 8" *)dy(1,,5.7,,5,)
gn—k n k+2 +(1 +,ug n k+2)[gn k+3 +gn—k+4
+(1+,Ugn k+3 g k+4)d (r

n+5? n+2m )]

< gn—k n k+2 +(1+ug2(n—k)+2)[gn—k+3 +gn—k+4]
+(1 +‘ugz(n k)+2)(1+‘ug2(n k)+7)[gn—k+5 +gn—k+6]

KL+ Ag" )14 g ... (14 g )
(g7 + @ (L g™ ) (1 + g™ ).
1+ ug%’ A+ g ) (31T )
=g g (L g [ g ]

+(1+ UgZ(n_k)+2 )2 [g“'m”?’ + gk ]H 1+ ug2<n—k)+4j+3)
i1 o

m—2
+HJ@+ug? o)A+ ug™ ) g d (1,7, )

i=1
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Considering the fact that ge[0,1), it implies

dy(7,,7,,0,) S &5+ 27+ (L4 ug”) g™ + 2]
+(1 + ‘ugZ)ZgU*k[g%JrS + g2i+4]H (1 + ‘ng4j+3) (39)
i=1 =1

m—2
+H (1 + ‘ug41+3)(1 + ‘ugz)gn—k+2m—1

Let W =(g*" +g2‘+4)H (1+ ug***). Through ratio test, we find that ZW converges, as hml Vt\;l <1

1

and ge[0,1). Equatlon (3.9) thus results in the conclusion that d,(z,,7,,,,) tends to zero as v, m tend

to infinity. Accordingly, from both the cases, we get
ds(7,,7,,,)=0,Vp,3e N.

n+3

n+2m

Therefore the sequence {7,} is Cauchy. The existence of some 7 € Y corresponding to 7, — 7 1s ensured
by the completeness of Y. Furthermore, we establish that 7 is a fixed point of G. Consider

d,(Gr,7) <d (Gt,G1)) + dy(GT,,7,) + dy (7,,7) + ud,(Gt,G1,)d, (G717, )d 1 (7,,T)

<gd,(7,7,) +dy(7,,,7,) +dyg(7,,7) + ugd,(7,7,)d,(7,,,,7,)d, (7, ,T)

Letting y — oo in the previously given inequality, we find d,(Gr,7)=0 i.e., Gt =7. Thereby 7 is a
fixed point of G. Through the use of inequality (3.1), we can easily show that 7 is a unique fixed point
of G. ]

Theorem 3.2. Let (Y,d,) be a complete Branciari suprametric space and G:Y —Y is a mapping.
Suppose that there exist mappings g,,8,:Y XY —[0,e) such that g, +g, <1 and

d;(Gt,G) < g,(1,G1)d, (7,GT) + 8,(1,GHd, (1, Gr), (3.10)
for all t,ue Y. Then the fixed point of G is unique.

Prof. For every t,€Y, the iterative sequence {7,} is specified by 7, =G7,_,,9e N. Inequality (3.10)
gives with the following
d,(z,,7,,,) =dy (Gt ,,GT,)
<g(r,.,Gr )d,(z, .Gt )+ 8,(1,,GT)d,(7,,GT,)

=g,(t,,,7,)ds(7,,,7,) + 8,(7,,7,,,)d,(1,,7,.,)

n+l

Therefore, we get

8(1,,,7,)
dB (Tn ’ Tn+1) < [%]dB (Tn—l ’ TU)
2 n’ n+1

— K‘nflds (Tn—l’Tn) (311)

<dy(t,,,7,),

_ &0.7)
1-g,(1,,7,.,)
all fixed integer k and for all y >k, it fulfils

where «, | <1. As a result, the sequence {d,(r,,7,,,)} 1s decreasing and with regard to
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V-
dB (T\)’Tnﬂ) S H Kn xd (Tk7Tk+1) (312)

This implies limdB(rn,T )=0, subsequently there exists ke N so that for all y > k, we have

dy(7,,7T

n+1

7,,) <1. Consider

dy(7,,7,.,) =ds(GT_, GTUH)

<g(r,,,Gr )dy (7, )d, (T
=g,(t,,,7)ds(7 ,,7) +8,(7,,,7,,,)ds(T,,,,7,.,)

p-k-1 y-k+1

Sgl(,z’-x1—1’1’-r;)H —i-1 B(Tk’rk+1)+g2(Tn+1’Tn+2)H p—i+l B(Tk’TkH) (313)
i=1

p-k-1

= [gl (Tn—l ’ Tn ) + Kk Kk+1 g2 (Tn+1 > Tn+2 )] H Kn—i—ldB (Tk ’ Tk+1 )
i=1

n+2

Grnfl) + g2 (T GTUH)

n+l ’ n+1 n+1?

n-k-1

_5 H 1) i— ld (Tk7Tk+1)’

where & =g /(7 ,,7,)+K,.K,,.8,(1,.,,7,,,)>0. In order to illustrate {7,} is Cauchy, we take into

p-1°
dy(7,.7,.,) in a pair of distinct cases.

Case 1: We proceed by delving into an odd number represented as 3=2m +1, where m > 1, then the
following is obtained from (3.12):

d,(t,,T )Sdy(t,,7,,,) +dy (1
+ud,(t,,7,,,)ds (T

n+1? n+2)+d (T
)d(z

p+2m+1 p+l n+27? g+2m+1)

n+l p+1? n+2 n+27? n+2m+1 )

-k n—k+1
= H Kn—i dB (Tk 7Tk+1) + H Kn—i+1 d (Tk ’Tk+1) + d (Tn+2’ n+2m+1)
(3.14)

y-k n—k+1
+‘UH Kn—i dB (Tk ’Tk+1 ) H Kn—i+1 d (Tk ’Tk+1 )d (Tn+2 ? Yp+2m+l )
i=1

n—k r) k+1 n -k+1

S H Kn—i —i+1 + (1 + ILLH —i+1 )d (Tn+2’ n+2m+1)
i=1
where
d(z )< dy(1,,,,7,,,) + dy(T )+d,(t

+ﬂdB (Tn+2 Y y+3 )dB (Tn+3 ’Tn+4 )d (Tn+4 ? Y p+2m+1 )

n+27? n+2m+1 n+3? n+4 n+4 n+2m+1)

p-k+2 n-k+3

—H \)x+2+H 1+’3+(]‘+‘IJ“H

i=1

dy(t

n-k+2 n-k+3

U i+2 I I \; ‘+3)

n+4? 1)+2m+1)

Inequality (3.14) subsequently follows

r) k+1
d (Tn ’Tn+2m+1) H 1) i+l + (]‘ + ‘LLH 1+1)

[n k+2 n—-k+3 n k+1

Kyoisz T H 1+3] (1 +.UH
i=1
X (1 U H LS H Ky l+3)d5 (Tn+4 ’Tn+2m+l)

n k+1

\+1)

n-k+2 n-k+3
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y-k p-k+1 n—k+1
H H n1+1+(1+uH'< H i)
n—k+2 n—k+3
[H n i+2 H Kn—i+3]
i= i=1
p—k+1 n-k+2m-4 p—k+2m-3
+ (1 + ‘uH K H 1+1) te (1 + ‘u H Kn—i+2m—4 H Kn—i+2m—3)
i=1 i=1
n—k+2m—2 y—-k+2m-1
><[ H Kn‘+2m2+ H Kn\+2m1]
i=1
p—-k+1 n— k+2m 2 p-k+2m-1
+ (1 + ‘UH K H H—l) (1 + ‘u K —i+2m-2 H Kn—i+2m—1)
i i= 1 i=1
d (Tn+2m’ n+2m+1)
-k+1 n-k+1 n-k+2 n-k+3
<H1< +H H1+(1+uHr< ,”+1)[HKU_H2+HKM]
i=1 i=1
y—-k+1 p-k+2m—4 p-k+2m-3
+ (1 + ‘UH K H H—l) et (1 + ‘U H K\j—i+2m—4 H Kn—i+2m—3)
i=1 i=1
p-k+2m-2 y—k+2m-1
X [ H Kn i+2m-2 + H Kn—i+2m—1]
i=1
y—k+1 p-k+2m-2 p-k+2m-1
+ (1+HHK H \+1)"'(1+tu“ H —i+2m-2 H Kn—i+2m—1)
i=1
p—k+2m
X H 1+2md (Tk’rk+l)
n—-k n—k+1 m-1 ~n—k+2i p—-k+2i+1
< H Kn—i + H Kn—i+1 + [ H v— l+21 Kn—l+21+1]
i=1 i=1 i=1 1=1 =1
p—k+2i— p-k+2i-1
XH(1+:LL H nl+2;2 H nl+2)1)
=1
n—k+2i-2 p—k+2i-1 p—k+2m
AT TT e TT %) TT 5
n 1+2i-2 p-l+2i-1 p—i+2m
I i (3.15)
n-k+2i-2 n-k+2i-1 n-k+2i n-k+2i+1

Let W= H(l"':u H Ky 142j-2 H K, 1+2,1)[H Kyreai T H Kn—l+2i+1]' Then, we get hml Vl\;l

=1 i

n— k+21+2 p—k+2i+1
111_)1}3(1+ K, oo I I KUMM)[KMHZK“+2i+1 +K‘n+2i+1] <1.Consequently, we determine by ratio test
l:l

that 2 W, converges and equation (3.15) thus leads to the conclusion that d,(z,,7,,,,.,) tends to zero
i=1
as y, m tend to infinity.

Case 2: Now, suppose by considering an even number represented by 3=2m, where m > 1, then the
following is derived from inqualities (3.12) and (3.13):

dB (T\) ’T ) S dB (T n+1) + d (Tnﬂ ’ n+2) + d (Tn+2 ’ n+2m)
)dB (Tn+1 > Vp+2 )d (Tn+2 > ¥p+2m )

p+2m

+udy(t,,T

p+1
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n k+1 n k+1

n—-k
< 1:1[ K, + a T (1 + ,uH

n—i+1 )dB (TU+2 ) Tg+2m )

y-k+l r) k+1
<HK—U‘+H 1+1+(1+:uH 1+1)

n—k+2 n—k+3
X [H Kn—i+2 + H Kx]—i+3]
i=1 i=1
r; k+1 p—k+2m-6 n-k+2m-5
+ (]' + HH 1+1) (]' + ‘LL H —i+2m-6 H Kt)—i+2m—5)
i=1
p-k+2m-4 y—-k+2m-3
X[ n\+2m4+ H K\jH—ZmS]
r; -k+1 p-k+2m-4 p—k+2m-3
+ (]‘ + ‘UH 1+1) (]‘ + ‘U K —i+2m-4 H Kn—i+2m—3)
i=1 i=1
d (Tn+2m 29 n+2m)
n-k+1 n—k+2i n-k+2i+1
< HK\) i + H —i+1 + 2[ H n Z+2t H K\)—l+2i+1]
i=1 =1 =1
n— k+2‘ p-k+2i-1
XH(l + 'u Kn—l+2; H y—1+2j— 1)
n-k+2i-2 n-k+2i-1
+H(1+:u Kn—l+2i—2 H Kn—l+2i—1)
=1
p—k+2m-3
X€n+2m—2 H Kn—i+2m—3 dB (Tk ’Tk+l
i1 (3.16)

n-k+2i p—k+2i+1 ]

y-k+2i-2 p—k+2i-1
Let W H(].‘F‘LL H Kn—l+2j—2 H Kl)—l+2j—1)[ H Kn—l+2i + H Kn—l+2i+1

=1 =1 =1 =1

Then, we see that
n—k+2i n-k+2i+1

11m(1 + H n 1+2i I I Kn—l+2i+l) [Kn+2i+2 Kn+21+1 + Kn+2i+1] < 1
i =1 =1

hml 4l
W

i—eo

Therefore, we establish by ratio test that ZV\{ converges and equation (3.16) thus leads to the con-
i=1
clusion that d, (’L’U,T ) tends to zero as y, m tend to infinity. Accordingly, from both the cases, we

obtain

p+2m

dy(t,,7,.)=0,Vp,3e N.

Thereby the sequence {7,} is Cauchy. The existence of some 7€ Y corresponding to 7, =7 1s ensured
by the completeness of Y. Furthermore, we establish that 7 is a fixed point of G.

v+

Consider
d;(Gr,7) <d,(Gr,G1)) + dy(Gr,,7,) + iy (7,,7) + ud, (Gt,Gr,)d, (GT,,7,)d,5 (7, ,T)
< g,(r,G1)d,(7,G7) + 8,(1,,G1,)d, (7,,GT,) + dy(7,,7) + ulg, (7,GT)
d,(r,Gr) + g,(7,,Gr,)d,(7,,GT,)]d, (GT,,7,)d5 (7, ,T)

n?
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Letting y — oo, we get d,(G7,7)[1- g,(7,G7)] < 0. Hence d,(Gt,7) =0 i.e., Gr =7. Thereby 7 is a fixed
point of G. Assuming that 7 and 1 are two fixed points of G, it can be seen that Gt =7 and Gi=1.
Consider

d,(t,1) =d,(Gt,Gr)
<g,(t,Gr)d,(1,GT) + g,(1,G1)d, (1,G1) =0, (3.17)

that conclude 7 =1. The fixed point of G is therefore unique. O

. . 1 . .
Considering g,(r,1)=g,(r,1) =8 < 2’ for every 7,1€ Y in Theorem 3.2, we conclude with the Kannan
fixed point theorem in the setting of Branciari suprametric space as stated below:

Corollary 3.3. Let (Y,d,) be a complete Branciari suprametric space and G:Y —-Y is a mapping.
Assume that

d,(Gr,Gr) < gld,(7,G7) + d,(1,Gr)], (3.18)

1
forall t,1€eY and g< 3 Then the fixed point of G is unique.

4. Existence-uniqueness of solution of the boundary value problem of nonlinear fractional
differential equation of Riemann-Liouville

The application of Theorem 3.1 to investigate the existence and distinctiveness of solutions to a non-
linear fractional differential equation boundary value problem is the principal objective of this section:

D! 3(w)+ p(u,3(u) =0, O<u<l,
3(0)=31)=0,

where 1<b<2 is a real number, D;, is the standard Riemann-Liouville differentiation and
3:[0,1]1%[0,%0) — [0,0) is a continuous function. Given that all continuous functions specified on [0, 1]
are expressed by Y =C([0,1],R), the complete Branciari suprametric on Y is defined according to the
following with the constant p = 6,

d(3,20) = K(3,5)[1 + (3, 5)], (4.2)
where x is a rectangular metric defined by

{2 [3(uw) —2c(u) |, 1if 3(u)—2(u)=1

otherwise

(4.1)

K(37 ) -

for all u>0 and 3,5x€ Y. Note that 3e Y solves equation (4.1) provided the subsequent integral equa-
tion will also be solved

3(w) = F(b)j ul-9)"" p(s, 3(8))ds—% [ =9""p(s,3(s))ds. 4.3)

The readers can pertain to the research article [35] for a more thorough overview of the setting of the
problem. The preceding theorem proves that there exists a solution to the nonlinear fractional differ-
ential equation (4.1)

Theorem 4.1. Let the integral operator G:Y — Y be determined by

Gu) = — ) pls,e)ds —— [ (u=5)" p(s. (s, (“44)

1 1
@l ol



Zubair S.T., et al. Results in Nonlinear Anal. 7 (2024), 80-93 91

where g :[0,1]%[0,) — [0,0) corresponds to the following specific criteria:

1. 1p(8,3(8) = p(s, () I<] 3(8) = () | ,V3,c€ ¥
b-1 b
2. sup| 2 ru ]2<1
wen T'(b+1)
The nonlinear fractional differential equation (4.1) therefore has an unique solution in Y.
Proof. Consider

2| G3w) - Goew | (1 + 2| G3w) - G| ) =2 G3w) - Goew) | +4 | G3w) - Goe) |

=2| 2 ol [[a-9"[pes, a5 - ps, (s s

L [* (w9 [ 5,505~ pls,¢(5)) s |

F(b)
= (b)j (-5 [ (s, 35— p(s, () Jds
F(b) —[* w9 [ps. 550~ pls. 25 Jas
G _[' =9 | pto. 305 - pls. (s) | s
= KR A LCE ORVICOIED)
;‘(b) [[a-s"1pGs, 50 - p(s, () | ds
gl a9 ot 36— pts o L as)
<2( ”(b)j 1-9"| 5(9)- %<s>lds+% (-5 | 3(9) ~ 5¢(5) | ds)
o a6 -0 ds+ Tk @ 5@ -t las)
<2sup | F(b)—" (1- %L (u—s)"ds)
+4sup [ 300 - «(u F(b)j< s+ 1l (a9 ds)
< (2 sup s - 44 sup [ s - F]
< sup ()2 sup |36~ [1+2 sup |00 - |

<s
UE(O,Ilj) F(b +1) ue(0,
Consequently, the above-mentioned inequality yields

dy(G3,Gx) < gd,(3,),

b-1

u
where g=s
£= ue(og[l"(b 1)

verified. In accordance with the fact that G has an unique fixed point, the specified nonlinear frac-
tional differential equation has a unique solution. ]

] In this regard, it is apparent that the presumptions of the Theorem 3.1 are
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Conclusion

The conceptual framework of Branciari suprametric spaces, which appears to be more effective than
the ideas of rectangular metric spaces and suprametric spaces and constitutes an alternate perspec-
tive on the existence and uniqueness of the solutions to nonlinear fractional differential equations
of the Riemann-Liouville type, was employed in this work. In the context of Branciari supramet-
ric spaces, we presented an illustration and defined the terms convergence of sequences, Cauchy
sequences, and completeness. A number of fixed point theorems, including the Banach fixed point
theorem, were also proved in this space.
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