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1. Introduction

Brouwer [1] introduced fixed-point(FP) theory in 1911. Banach [2] later invented the Banach con-
traction principle in 1922. In 2012, Sedghi et al. [3] established S-metric space(SMS) and proved FP
theorem on a complete SMS. Sedghi et al. [4] proved a general FP theorem in SMS. Sedghi et al. [5]
presented a coupled coincidence point theorems for multi-valued maps on complete SMS using mixed
g-monotone mappings. Kim et al. [6] presented some FP theorems for two maps on complete SMS.
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Mlaiki et al. [7] proved new FP theorems applying the set of simulation functions on an SMS. Adewale
et al. [8] introduced the idea of rectangular SMS.

In 2017, Gordji et al. [9] introduced the ideas of orthogonal sets and orthogonal metric spaces
(OMS). Gordji et al. [10] proved the existence and uniqueness theorem of FP for mappings on a gen-
eralized OMS. Senapati et al. [11] used w-distance to verify the well-known Banach’s FP theorem
in OMS. Gordji et al. [12] proved the existence and uniqueness theorem of FP for mappings on
e-connected OMS. Gungor et al. [13] presented some FP theorems on OMS via altering distance
functions. Yang et al. [14] presented an orthogonal (F, 1))-contraction for the Hardy-Rogers-type
mapping. Sawangsup et al. [15] established the concept of an orthogonal F-contraction mapping in
OMS. Sawangsup et al. [16] established the concept of orthogonal Z-contraction mappings in OMS.
Gunaseelan et al. [17] established some FP theorems in orthogonal complete F-metric spaces. Arul
Joseph et al. [18] proved some fixed point theorems on orthogonal b-metric spaces. Ismat et al. [19]
introduced the concept of generalized orthogonal F-Suzuki contraction mapping and proved some FP
theorems on orthogonal b-metric spaces. Arul Joseph et al. [20] proposed the concept of orthogonally
triangular p-admissible mapping. Gunaseelan et al. [21] used the concept of orthogonal connected
contraction maps type I and II to prove the coupled FP theorem in OMS. Singh et al. [22] demonstrate
Boyd-Wong and Matkowski type FP theorems for OMS. Zeinab et al. [23] proved the FP theorem for
mappings in SMS by decreasing the completeness of SMS using relations.

In 2017, Kamran et al. [24] introduced the concept of extended b-metric space (EBMS) and proved
various FP theorems. Mlaiki [25] proposed the concept of extended §,-metric spaces. Algahtani
et al. [26] proved the existence of common fixed points in the frame of an EBMS. Kushal et al. [27]
proved FP theorems for some classes of contractive mappings. Aydi et al. [28] generalized some FP
theorems with Kannan-type contractions in the setting of new EBMS. Huang et al. [29] established
the existence of rational type contraction FP in an EBMS context. Nayab et al. [30] established a
Hausdorff metric over the family of non-void closed subsets of an EBMS. Qaralleh et al. [31] intro-
duced the notion of extended S-metric space(ESMS) of type (1,6). Later, many authors have proved
existence and uniqueness of fractional equations [32—-38]. Based on the generality of ESMS of type
(u,0) and orthogonality condition, we are the first who establish a FP result for extended orthogo-
nal 8-metric space(EOSMS) of type (U,6) with supporting example. Finally, we give applications on
Fredholm integral equation and fractional integral equations.

2. Preliminaries

In this section, we recall the main definitions and outcomes connected to SMS, OSMS and ESMS.
Definition 2.1. [3] Let V be a non-void set. A function ¢ : V> —[0,%) is said to be an S-metric on V, if

for each X,v,m,aeV,

(i)  eR,0,7)=0

(ii)) o(R,0,m)=0 iff R=v=m,

(ii) o(R,0,7) <P(R,R,a) +@(,v,0) + (7, 7,0)
The pair (V,0) is called an SMS.

Example 2.1. [3] Let V=R and ||.|| is a norm on V, then ¢(X,v,7) = o+ —2%|+|jv - x| is an SMS
onV.

Definition 2.2. [9] Define a binary relation L (br ) on a non-void set V. If br  satisfies the following
criteria:

IR, (VveV,olR,) or (VveV,X, Lv),

then pair, (V,1) is known as an orthogonal set(OS) and element X  is called an orthogonal element

(OE).
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Example 2.2. [9] Let V=2Z and a br on 2Z asx L ¢ if .9 = 0. Then (2Z, 1) is an OS with 0 as an OE.

Definition 2.3. [9] Let (V, 1) be an OS. A sequence {¥,},y is called an orthogonal sequence
(L-sequence) if

Vope iR, LR, ;) or (VoeN;R, LX)

o+1

Definition 2.4. [10] Consider a br on a non-void set V with metric 0 then the triplet (V, L, 0) is called
an OMS. The set V is said to be orthogonal complete if every Cauchy 1-sequence converges in V.

Definition 2.5. [10] Let (V, L, ) be an OMS and b: V — V. If for each L-sequence {R,},. — X implies
Bh(R,) = h(X) as ¢ — e, then b is called orthogonal continuous(L-continuous) at X.

Definition 2.6. [10] Consider a br on a non-void set V and (V, 1) be an OS. A mapping h: V — V is
called orthogonal preserving(L-preserving) if h(R) L h(v) whenever X L v.

Definition 2.7. [31] Let V be a non-void set. Suppose that 1,0 :V> —[l,%) and 0,V —>[0,00) are
given mappings. For Y X,v,m,ae 'V, let the following conditions hold:

(i) goﬂo'(N"L)’n) 2 07
(i) ¢,(X0,7m)=0 iff R=v=m,
(i) ¢,,(X0,7) < pu(R,0,1)9,,(X,X,a) +0(R,0,7)p,,(V,0,0) +¢,,(7,7,a).
Then the pair (V,(pm) is called ESMS of type (1,0).
Example 2.3. [31] Let V ={0,1,2} and define

0, X=v=nm

P, (Ro,m)=11, R£vzzm

i, R#£v,v=rm

Define 11,6 :V? —[1,%0) as
Uu®,v,r)=1+RX+v+rx

and

o(X,v,m)=1+Xvr

Then (V,(puc) is an ESMS of type (1,0).

3. Main Results

Definition 3.1. Let a br, defined on a non-void set V and a function u,0 : V? > [1,00) . If a mapping
?o :V? 5[0,00) satisfies the following condition, VX,v,wr,acV with X Lv L La, then V,0,,,1) is
said to be EOSMS of type (1,0).

O ¢9,,&0,m1)=0,
(i) ¢,®R0,1)=0 iff R=v=m,
(i) ¢,,(R,0,7) <uR,0,7)9,, (X,8,0)+0(X,0,7)¢,,(v,0,0) + ¢, (7,7,0).

Example 8.1. Let V = R, and define the mappings ¢,,(8,0,7):V® —>[0,00) and u,0:V? —[1,00) with
X Lv Llxif Ru,m>0 as follows:
¢, (X, 0,7) = max{X,v, 7},
(R, v,m) =[x -v|+1, and

o(R,0,m) =X — 71| +|v— 7|+ 2.
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It is obvious that conditions (i) and (ii) are satisfied.
(iii)  u(X,0,7)9,,(X,X,0) +0(X,0,1)0,,(,0,0) +@,, (7,7,0) =(|X-—v+1|)max{X,X,a}+
(|N — 7|+ v -7|+ 2) max{v,v,a} + max{z,7,a} >max{X,0,7} 29, (X,0,7).
Hence (V,¢,,,1) is an EOSMS of type (1,0).
Lemma 3.2. In an EOSMS of type (1,0), we have
¢, (R, X, 0) =9, (V,0,R).

Proof. For X,veV with X _Lv, by the definition of EOSMS of type (u,0),
0,0 (X, R,0) < u(R, X, 0)0,, (X, X, X) + 0 (X, R,0)p,, (X, R, X) + ¢, (0,0, X) (1)

and

¢, (V,0,R) < u(V,v,X)g, (v,0,0) + 6 (V,V,R)Y,, (V,0,0) + ¢, (X, R,0) (2)

Hence, we have

¢, (R, X, 0) =9, (V,0,R).

Definition 3.2. Let (V, o 1) be an EOSMS of type (1,6) and {Nq)} be an L-sequence in V. Then

(a) An l-sequence {N¢} in 'V is said to be convergent to XeV if for each ¢ >0, AN = N (e)e N such that
?,,(R,, R, ,R)<e Vo> N.

(b) An l-sequence {Nq)} in V is said to be Cauchy if for each £>0, AN =N(e)e N such that
0,(R,, R, R )<e Vo,ih>N.

(c) An EOSMS of type (1,0) is said to be complete if every Cauchy 1-sequence is convergent.

Lemma 3.3. Let (V, o 1) be an EOSMS of type (1,0). If L-sequence {X,} — R in V, then X is unique.
Proof. Assume L-sequence {X,} > X in V.

To show that X is unique, suppose that 3 v € Vand v L X with v # X such that {X ¢}—> v. Since V is an
EOSMS of type (u,6), then

P (R, R,0) < u(R,X,0)0,, (R, X, R )+ 0 (R, X,0)0,,(R,X, R )+ ¢, (X, R, 0)—>0.

which implies (pﬂG(N, X,0) =0. Therefore, X = v, which is a contradiction. Hence, X is unique.

Definition 3.3. Let (V, O 1) be an EOSMS of type (1,6). A self-mapping b: V — V is called contraction
if AH € (0,1) such that

q)m(hx,hv,hn)S’H(pﬂg(x,v,n), VR,v,reV with X LvLlx.

Definition 3.4. Let (V, O 1) be an EOSMS of type (L,0) and a mapping b: (V, ¢ , )=V, ¢ , L) then

uo’ o’

(1) b issaid to be L-preserving if hX L hv whenever X1 v
(it) b is said to be L-continuous if L-sequence {X } in V such that R, >R=HR —>HR as o—ee.

Theorem 3.4. Let (V, O 1) be a complete, EOSMS of type (1,0) such that 3 X €V and 8, LhRVRe V.

Let h: V — V be 1-preserving, ((pm, 1)-continuous mappings and the following criteria is satisfied:

¢, (OR,bv,hr) <He,, (R,0,7), VRv,reV with X Llv Ll 3)

where # € (0,1). Suppose that R, = h’R,, and for ¢ > i, we have
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N, X, K )+o(X, KK
hm ‘U( i+l i+1 ) ( i+1 i+l u) <l. (4)
bive p(R,RGR )+ O(R,R LR ) H

Additionally, assume that for every R€V,
}pgrg}[u(x¢, R, R)+0(R,, R, R)]<co. 5)

Then, b has a unique fixed point (UFP) oeV.
Proof. Now, define the 1-sequence {X ¢} as follows:
R, =HR,, X, =hX,,..., R =p'R  Vpe N.
By orthogonal definition, 3 X €V, such that
(VReV, X, LR) or (VReV,XRLR)).
Since b is L-preserving,
R, LbhXR, or hR, LX,.
Consider the L-sequence R, =h’X,. By equation (3), we have
0,0 (R, R, R, ) =0, (°RLHRHR) <H'g (R, R, K,), V=0
For all natural numbers ¢ < ¢, we have
Do (R, Ry, R ) S (R RLR DO, (R, KR ) +O(RLRLR O, (R, R R )+, (R, R R )
SURG,RLR D@, (R, R R ) +0(R, KR Do, (R, R R )
(R R RO (R R LR ) O (R R R DO, (R R K,)
+ 0,0 (R, R RS [U(R,, R, R ) +0(R,, R, ) ]9, (R, KK,
(R Ry R+ O(R R R ) [0, (R LR LR, )+
(R, R R )R, R R [0,, (R, R, 8 )+, (R, ,K, R ).

Consequently, since [M(Nw_l, N, R )+o(R, X Nw):l 21,

we have
00 (R, R, R ) <[ (R, R, R ) +0(R,, R, R ) ]9, (R, K, K,,)

(R, R R )+ OR, R LR [0, (R, R R K

R, R, R ) FO(R, R, R )]0, (R, K, X )

+uR, R LR )RR R )]0, (R, LR R)
1
Lz[u(xl,&,x )+0(R,R,K )]0, (R, X, X))
‘i"i
d}[/-t(NNNNN )+0(R,R,R) [ Hp,, (R, R, X))

Hence,

p-1
£, =Y [u(R, R, R ) +0(R, R, R )IH

i=1

:>§0#U(N¢,N¢,Nw)g[£w71—£¢]¢MG(NO,NO, 1) (6)

using ratio test and the condition (4),
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we obtain that Lim | wﬁp <o, and L-sequence (L’, ) is Cauchy.
Taking limit as v, ¢— in inequality (6),

= 11m ‘PM(N R,)=0.

AN
Hence, {N¢} is a Cauchy l-sequence. Since EOSMS (V, O 1) of type (u,06) is complete, 3 ® € V such
that

hm (pw(x W) = %’im ¢, (0,0,8,)=0.

9290
To show that w is a FP of b.
By the definition of ¢,

¢, (ho,ho,0) =9, (0,0,ho)< u(o,0,h0)p,, (0,0,%, )+ 0(0,0,h0)p,, (0,0, )
+9,,(hoho,R, )<[u(o,0ho) +o(o,0,ho)lp,, (0,0,%,,)+He, (00R,).
Take limit as ¢— in the above inequality,
¢, (ho,ho,0) =0,
that is, ho = o . Therefore, ® is a FP of ; Hence, the uniqueness of o follows from Lemma (3.3).
Definition 3.5. Let h: V — V on EOSMS (V, D, 1) of type (u,6). For X €V, the set
O(R,,b) ={X,,h R, 6K, ,H"R, ..}

is said to be an orbital of h at X .

Definition 3.6. Let h: V — V on EOSMS (V, o 1) of type (W,6). A mapping Q : V — R is said to be
h-orbitally lower semi-continuous at [ € V if

{R,} cOR,,h) and R, —>( as (/)—)oo:>Q(£)Slir;1%£an(N¢).

Theorem 3.5. Let (V, D 1) be a complete, EOSMS of type (1,6) such that3 X €V and X, LhR VRe V.
Let h: V — V be 1-preserving, ((puc, 1)-continuous mappings and the following criteria is satisfied:

0, (OR,HR,H*R) < Ho, (R,R,hR), VReV, (7

where 0 <H < 1. Assume that for every & €V, and for ¢ > i, we have
hm Au(xw-l’ ;+1’N )+O-(x1+1’ 1+17Nu‘;) <l
vise (R, KGR ) FO(RGRLR) H

Then L-sequence {h"X } is convergent to some ® € V. Moreover, ® is a FP of b iff Q(X) =¢,,(X,R,hR) is
h-orbitally lower semi-continuous at .

Proof. Now, define the L-sequence {X } as follows:
R, =HX,, X, =hX, =b°R,,...,8, ="K ,VoeN.
By orthogonal definition, 3R, € V, such that
(VReV,R, LX) or (VReV,XRLR)).
Since b is L-preserving,
R, LhR, or hX LK.
By equation (7), we obtain
0, (R,,R,R N<H, (R, |, R, ,R) <Hp, (R, R, K), V=0
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For all natural numbers ¢ < ¢, we have
Do (R, R, RS (R, R, RO, (R, KR ) +O (R, R RO, (R, KR 0,0 (R, KR )
< (R, R, R )P, (R, KR, +0 (R, KR )@, (KRR
F U, R R D (R R R HOR, R R Do (R R R )
+ 0 (R, Ry, ROS[U(R,, R R ) +0(R,, R, R )0, (R, R, R,
R R R )+ O(R R R DI (R R R+ (R, R, R )
+o(X,_,, X ,, X )]golw(&w_z,Nd,_z,}zw_l)wL P (R, R R ).

Consequently, since [u(X,_,X ., X )+o(X X X )]>1,
we have

P (R, R, RS [U(R,,R,,R ) +0(R,, R, R )]0, (R, R,
Ry R, K ) +O(R, R R DG, (R, KR, )
ot R R R )+ O(R, LR, R0, (R R R )
+u(R, R R )0 (R LR, LR )0, (R, R R)

P-1
= 2 LR LR ) +0(RLRLR )], (R, RR )

@#
L4

[#(Nl,N‘,N )+Oo(R,RLR)IH G, (R, R, X))

6

Hence,

p-1
L = Z[u(xi,xi,x@) +0(X,, R, R H

i=1
:>(pyo'(x¢7 ¢’N@)S[£q/;_£¢]q)ﬂg(xo7x07x1)' (8)

using ratio test and condition (7),
we obtain that lim £ <, and l-sequence {Ep} 1s Cauchy.
Taking limit as 1, 0—> in inequality (8),

= lim @, (X, X X )=0.

P, P—>o0
Hence, {X } is a Cauchy L-sequence and {X} — o€ V.
Now, assume that Q is h-orbitally lower semi-continuous at .

(p,uo (a)a w)hw) < llrglﬁinf (pyo- (Nq) ’ N¢ ’ quﬂ) < 1lI¢I)l_>Lnf H¢(pyo’ (NO ’ NO ’ Nl) = O,
which implies that ho = ®.

Conversely, assume that ho =0 and {X } c O(X,h) with {R¢} — 0 as ¢—ee.
Hence, we have

() =9,,(0,0,60) =0 Lim inf 9, (XX, X,.,) =lim inf O(K,),
Hence, Q is h-orbitally lower semi-continuous at .

Example 3.6. Let V = R. Define function (PﬂG(N,U,ﬂ)3V3—>[0,°°) and W,0:V? =[l,00) with
X1lvLlzmif X,0,7t 20 as follows:

0,0 (R,0,m) =|R - 7|+ |v -7,
U(R,v,7r)=max{X,v}+r7+1, and
o(X,0,m) =|R +v - 7| +1.
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Suppose that h: V — V is defined by h(R) = ;
bR br| |bv bhrx
Na ’ ==t =
9,0 (h%,bv,b) ‘2 e
R 7w |v =«
=4+ |———
‘4 4] |4 4

1
=L —n+ o)
1
_Z(pw(x,v,n).

1
Take H=—.
ake 1
Furthermore, for any ¢ € V, 1L-sequence {N¢} =h’ is {N¢} = %
For vy > i, we have 2

[ ¢ ¢ [ ¢ ¢
1+max{ }++1+. +————

. :u(NHl’ Ni+1’Nw) + O-(Nul’ Nm’xw) : 2H1 , 2i+1 2w 2”1 21+l 21/)
I (RX.K.) 40X KK =
’ HORRR) +O (R XK " B
ot oY 20 20 2
e ¢ 2 3c
. i+l ¥ i+l P . i+l
< lim 2 2" 2 2 = lim 2 :1<l
dime € C 20 € wioe 3¢
—+—+———+2 —+2
20 2v 20 2 2'

Thus, all condition in Theorem (3.4) are verified. Hence, h has a UFP equal to 0.
To expand the prior theorem, we will use some non-linear functions.

Theorem 3.7. Let (V, P, 1) be a complete, EOSMS of type (1,0) such that 3 X cVand 8 LhR VRe V.
Let h: V — V be L-preserving, ((puc, 1)-continuous mappings and the following criteria is satisfied:

q)w(hx,bv,hn)S;([(pm(x,v,n)], VXv,reV and RXL1lvlm, 9)

where y :[0,00) = [0,00) is a non-decreasing function such that for each fixed &> 0,
}Dim)c¢(§) =0. (10)
Also, assume that 36> 4 and L € N such that ¥V ¢ €, V we have
13}
H(NM,NM,Q) +6(N¢+1,N¢H,e) < E,‘v’(p >L.

Then, h has a UFPin V.
Proof. Let XeV and construct a L-sequence,
R, =R,X =hR, K, =hX, =0°R,..,K, =hX,_ =p""R.
By orthogonal definition, 3X €V, such that
(VReV,R, LR) or (VReV,RLR)).
Since h is L-preserving,

R, LbhX, or hR, LX,.
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For € > 0, then equation (10) indicates that after sufficiently many iterations of %, For large ¢, the

value x%(e) will be smaller than % as §—oo. = y°(e) < %

Now, choose ¢ > L. Let Z=h® and A = x°.
By equation (9) and the increasing property of y,

0.0 (TR, IR, T0) = @, (H"R,5°R,6°0) < (@, (6°'X, 677X, 6" v))
<1 (00 (07K R5770)) - < 2% (@, (RX,8,0))
=7(0, (X, %,0)).

50, @0 (R0, Ry, Ry) — 0 as ¢—ee.

N)<g

Hence, 3 ¢ € N such that ¢, (X, _,, X, X, %

It shows that X_e B(X_,¢), so B(X_,e) #¢. Thus Vre B(X_,e), we have

0o (I, Im, IR ) = @, (IR IR, I7) <¥(0,, (R, R, 7)) Sy(e) =¥ (8)<—.

Also, we have

0 (I, 17,8, ) <[ u(9,, (In,17,8,)) + 0 (9, (In,1n,K,))|0,, (Tr, Tr, K, )
2E .8
2 20

| ™

£
+(p,uo(NK+1’NK+1’N ) 5_

Since, ¢, (1R, HRLHR) = 0, (R, KK < %,

P (R, R I) S (R R I, (R R GR HO(R LRI, (KRR R )
+ @, (I, Im, R, ) <[R, R, Im) +0(R, R, I7) |0, (R KR )
+0,,(In,In, R, )S[UR R, IT) +0(R K, I7) |0, (R R GR )
+H u(Ir, In,X,,) +0(In,Ix, R ) |9, (Ir, I, R, )

o[ € o(e¢
<—| = |+=| = | <e.
(5 )5(5)

Therefore, Z maps B(X _¢) to itself. Since X, e B(X,,¢), we have IR, € B(X,¢).
By continuing the same procedure, we get I;”K e B(R_,¢),Vye N.
In otherwords, we have X, e B(X_,¢),V/>k.
Consequently, we obtain q)w(xv, o & ) <ENYL>K.
Therefore, {X }is a Cauchy l-sequence. Since V is complete, 3 ¢ € V such that X _—e as k—eo.
Moreover, we have
e=limRX_ = }(13.} R =7(e),

K—>o0

Hence, ZThas a FP .
To prove the uniqueness:
Let ¢ and v be two FP’s of 7.

P, (e,6,0) = 0, (Te, Te, To) < 1° (9, (¢,¢,0)) = ¥(@,, (¢,¢,0)) < @, (¢,¢,0).



Samuel BW, et al., Results in Nonlinear Anal. 7 (2024), 146-162 155

Thus, Pus (e,e,0) =0. Therefore, ¢ = v. Hence Z has a UFP.
On the other hand,
H*(R) =T (h"(R)) —>e, as Kk —> oo,

Therefore, h*N¥ — ¢ as ¢—o VXK. This implies that e =lim __hX =h(e); Hence, h possesses a UFP
equal to 0.

Example 3.8. Let V = [0,1]. Define mappings (Pm,(N,v,ﬂ)IV3 —[0,0) and u,0:V?® =[l,00) with
R Lv Lz iff R,v,m >0 as follows:
0, X=v=nm
Puo (R,0,7) = {|max{&,v} - 7'C|, otherwise,
u(X,v,7) =max{X,v}+7+1, and

o(X,0,7) =min{X,v} +7 +1.

and
u
x(w)= B
Let b be a self-mapping on V defined by h(R) = 3.
Note that
1

0,0 (R, HV,h7) = ==0,,(%,0,7) = x(9,,(X,0,7)).

"2

X v b4
maxy—,—¢——
{2 2} 2

Furthermore, for any ® € V, we have X, = 2%

Also, for any ¢ € V, we obtain

X X . X X
,LL(N¢,N¢,C)+G(N¢,&¢,C):max{2—¢,2—¢}+c+1+m1n{2—¢,2—¢}+c+1

N 1
:2c+2+2¢71 s4+2¢71

Let us choose L = 3, As ¢ increases the term (2%1) decreases. For sufficiently large 0, the sum will be
less than 2
2

And in this case, we pick 6 = 9. Thus, all the criteria of Theorem (3.7) are verified. Hence, h has a UFP
equal to 0.

4. Application of fixed point theorem to Fredholm integral equation and Fractional
Integrals

4.1. Fixed Point Approximation to Fredholm integral equation:

Consider, V = Cla,c] be the space of continuous real-valued functions on [a,c]. The function
(pw(N,v,n') :V? 5[0,) is defined by

9,0 (R(E),0(8),7(©)) =[|R () — (&) +[[v(&) - ()|,
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where [a(§)|_ =15n[a}§|a(§)|, VR,u,mreV and X_Llvlr.
Also, define u,0:V? —[1,0) by
1 (8.0, 7)) = max max ¥ ©)

Eelay] \ Eelayc]

v(@)}+ @) +1),

K

and

o (R(E),0(&), 7(&)) = min(min

Selac] \&ela]

N(é)l,lv(€)|}+|ﬂ(é)|+2).
VX,v,re V.

Define the following binary relation L in V, X Lv if R({)v(€) 2v(€), for almost every & € [a,c]. It is
obvious that (V, o 1) be a complete, EOSMS of type (u,0).
The Fredholm integral equation is:

R(E) =)+ [ MG, t.X(0)dt, & telal, (11)

where j:[a,c] > R and M:[a,c]x[a,c]xR — R are both continuous functions.
Let h:(V,9,,,1) = (V,0,,,L1) be given by

BR(E) = (&) + [ M(E,tX(D)dL, & te [ac].
Now, we show that equation (11) has a unique solution under the following condition:
1
M, t,m) = ME t,7,)| < ——|m, —m,|, for each &, tea,c].
c—a

Note that if X € Vis a FP of b, then X is a solution to the equation (11).
First we claim that for every X € V, hRX € V.
To see this, for every £<[0,1],Xe V,
we have

HR(E) =)+ [ M, . R(D))dt 21

We conclude that h&(E) >1 and since hX € V
Now verify that the hypothesis in Theorem (3.5) is satisfied. to do this, we show that

(a) 3R, eV suchthat X, LHRVRe V.
(b) bis L —preserving

(© bis(¢,,,L)-contraction

(d) bis L-continuous

Proof. (a) Put X = a (the constant function X = a), we have a LhRVRe V

(b) we recall that h is L-preserving if for every X,ve V,R L v, we have hR L hv. we have shown above
that hR(E) >1 for every & € [0,1], which implies that hR(E)hv(E) =hv(&) VEe[0,1].. So hX L ho.

(c) Let X,ve V,X Lv and £€[0,1], we have

[o% -] = max|o (&) - h*R(£)| = max

M LHR) - MCE, Lx(O)IaY

< max ——[R() ~HR()| [ dt < max|R©) ~pR@)| =[x -h¥]_.

Selacl ¢ —q

for any X € V. Consequently, we obtain
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¢, (HR,bh X,h*R) < He,,(R,X,HR), where 0<H <],
(d) Let {Nq} be an 1-sequence in V such that {Nq} converges to some X € V. Since h is L-preserving,
{H Nq} is an L-sequence, too.
For each g € N, we have

X, —pR|<H[x, -8, 0<H<1

As gq—oo, it follows that b is L-continuous.
Therefore, all the criteria of Theorem (3.5) are fulfilled, and § has a UFP. Hence, unique solution
exists for the Fredholm integral equation.

4.2. FP Approximation to Atangana-Baleanu Fractional Integrals

Recently, the fractional calculus and the fractional differential problem have attracted attentions
of many researchers, also they have applications in science and dynamic fields [39, 40]. In 2016, the
fractional integral in the form of equation was introduced by Atangana and Baleanu. Using the
FP theorem, we demonstrate the Atangana—Baleanu fractional integral equation’s existence and
uniqueness.

Consider, V =C[a,c] and the function ¢, (X,v,7): V? - [0,e0) is defined by

00 (R(E),0(8),7(8)) =[R(&) = (&) +[v(&) —=(&)|.
where [a(§)|. = ?g[?§|a(§)|, VX, 0,meV and XLlvLlnm.

Also, define u,0:V? —[1,0) by

#(RE)0(E),7(E) = max max {[RE) @]} +]7(©)] +1),

Selax]

and

o (R(),v(8),7(£)) :min(mm{|x(§)| |v(§)|}+|n(§)|+2) VR,u,meV.

Eelac] \Sela]

and define the relation L in V: X Lo if X(&)v(E) > v(&), then (V, 9, L is an EOSMS of type (1,0).
The Atangana-Baleanu fractional integral equation 1s

IR(E) = W R(E)+ <5>r<5> — O ['R(OE - dt, (12)

where 6 € (0,1], X(t) € Vand &,t € [0,1]. Also, 1 is the normalization function such that n(0) =n(1) = 1.
To prove that unique solution exists for the Atangana-Baleanu fractional integral in equation (12)
under the following condition:

-0’
) + YEE) <H, where He (0,1). (13)

Define b, :(V,9,,,1) > (V,9,,,1) by

b4 X <é>—7) &)+ (SW) — 0 [R@E -0 (14)

First we claim that for every Xe 'V, b ,,Xe V.

To see this, for every &,te[0,1], Re V,
we have

bsR(E) =——R(&)+ R((E-t)°"dt=1.

(5 ) (5)F(5 ) J
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We conclude that b ,X(§) >1 and since b zXe V.
Now verify that the hypothesis in Theorem (3.5) is satisfied. to do this, we show that

() 3IR,eV suchthat X, Lh, K VReV.
(b) b z1s L-preserving.

() bygls ((p“c, 1)-contraction.

(d) b ,z1s L-continuous.

Proof. (a) Put X = a (the constant function), we have a L ,,XR VRe V.
(b) Since b ,, is L-preserving if for every X, veV, X Lv, we have b, ;R Lbh,v. we have shown
above that b X(E) > 1 for every &€ [0,1], which implies that b ,;X(&)h ,0(5) 2b,,0(E) VEe . So

b X Lb 0.
(c) Let X,ve V, R Lvand¢,t € [0,1], we have

2
HF)ABN —bABN‘ = ?[ax
UC

b 45 X(8) =1 X(6)| = max

5-1
[ﬁ ©)+ (5)r(5)j R(DE - 6) dt]

[ 0) hausR(S)+ (5)r(6)J.hAB (HE -9 dtJ

( (5)[ () ~hsR(E) ]~ @m)J (-0 dt[R(t) - hABN(t)]]

§E[a c]

Smax( <5>| () —,R(E)| -

Eelay]

(5)r<5)I (& -0 dt|R(t) - UABN(UIJ

) 5 [0 T e
_Iglel[?,ﬁ (5)|N(5) hAB (5)| (5)1_‘(5){ S :|[|N(t) bABN(t)|]

_ & E-0" i
= max (5)| (&) —b s R(E)|+ TGOTG) o 1X(t) bABN(t)|J

=max |N(‘§) hAB (5)|

Eela] (5)

R(E) — b R(t
(5)F(6)| () = b ()|]

< max (5 — E)g

N(S)—bhzN
&ela] 17(5) 77(5)“ (5) ]| (‘f) bAB (§)|‘
< Hmax|R() ~b ;X (©)] =H[X ;& .

for any X € V. Consequently, we obtain
Puo (D4sR,0,15 X, 025 R) S H,, (X, R,b X)), where 0<H<L.
(d) Let {X } be an ((pw, 1)-sequence in V such that {Np} converges to some X € V. Since b, is L-
preservmg, bR, is an ((p , 1)-sequence.
For each g € N, we have
045X, —bsX| < H|R, -8, 0<H<1.

As @ — o, b, is L-continuous.
Thus, all the criteria of Theorem (3.5) are satisfied, and b ,, has a UFP. As a result, unique solution
exists for the Atangana-Baleanu fractional integral equation.
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4.3. Riemann—Liouville Fractional Integrals Fixed Point Approximation:

Using the fixed point theorem, we demonstrate the Riemann-Liouville equation’s existence and
uniqueness.
The general form of Riemann—Liouville fractional integral is

RL 6_#5 _4\o1 ¢
oI “T6) ﬂN(t)(é )’ dt; T(6)>0, (15)

where 6e R, X(§)e V and E,t € [0,1].
Let V =C[a,c] and the function @,,(X,0,7):V® —[0,%) is defined by

P (R(E),0(8),(8)) = |R(E) = ()| + (&) —7(E)|.
where ||a(§)||w zgl[a)%|a(§)|, VR,v,reV and X Lv 1l

Also, define u,0:V® —[1,0) by

1 (R 0(E).7(E) = max|max {[RE) @]} +|x(©)] +1),

Eelayc] \ Eelayc]

and

o (R(E),0(&), (&) = min(min

celacl\Gelax]

RO @]} + (&) +2).
V&,u,re V.

and define the relation L in V: X Lo if X(&)v(&) > v(&), then (V, ¢, 1) is an EOSMS of type (i1,0).
To show that equation (15) has a unique solution under the following condition:

1 (E-0)7'(¢E=-0 <
(S +1) ‘(5 - t)ﬁfl‘

K

where H € (0,1) and & # t.
Also define an operator h: V,9,,,L) > (V,9,,,1) by

_ 1 g o1
) = 55 [ROE -0 16)

First we claim that for every X € V, hX € V.

To see this, for every £e[0,1], X €V,
we have

_ 1 g o1
hN(é)—F(é) R(OE -1 de 21

We conclude that hR(§) > 1 and since hX € V.
Now verify that the hypothesis in Theorem (3.5) is satisfied. to do this, we show that

() 3R, eV suchthat X LHVVR € V.
(b) bis L-preserving.

() bis ((puc, 1)-contraction.

(d) bis L-continuous.

Proof. (a) Put X = a (the constant function), we have o 1 hX VXe V.
(b) Since h is orthogonal preserving if for every X,v e V, X L v, we have hX L hv. we have shown above

that hR(€) > 1 for every & €[0,1], which implies that HR(E)hv(E) > hv(€) VE€[0,1]. So hX L ho.
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(c) Let X,ve V, X8 Lvand £e€[0,1], we have
o ~b°x| = max|p & (&) -b*X¥ ()] =m

[ ROE -0 - = hROE -0 ldt‘

Eelas) F(6) rw)’:

< max
Eelayc]

j(é )“dt>]|x<t> 980 = max — ([ - 07|t [x(©) - pR(o)

[rw) “iecl T(3)

€~
§€[a 3 r(g) ‘(5 t)5 -1

1 E-v7 (@'
fe[aC] r2(6) ‘(5 t)é 1‘[ 5 | J|N(t) bx(t)|

_ L E-9""(E=0" Yneoy—nxct
ée[uc]r(g)‘(g t)a 1‘[ }| (t)-h ()|

s E-0"E-0’°
“ed TG+ |E-0°

‘( J11€ - v at)lx -px0)

|R() —hR(Y)| < H?g[%w(t) —hR()|=H|x-hx|_.

for any X € V. Consequently, we obtain
0, (HR,HR,H*R) <He, (X, R,hX), where 0<H<1.

(d) Let {& p} be an ((puc, 1)-sequence in V such that {& &0} converges to some X € V. Since h) is |-preserving,
{bX }is an (¢, 1)-sequence.
For each g € N, we have
b, —hR[<H[R -§|, 0<H<I.

As @ — oo, h is L-continuous.
Therefore, all the criteria of Theorem (3.5) are fulfilled, and § has a UFP. Hence, unique solution
exists for the Riemann—Liouville fractional integral equation.

5. Conclusions

In this article, we proposed the concept of an EOSMS of type (1,6). Then, we proved the generalized
fixed point theorems for EOSMS of type (1,6). Some examples are given in this new space. Finally, we
presented applications to check the existence and uniqueness of the solutions to the fractional and
fredholm integral equations. In future study, researchers can contribute to a deeper understanding of
EOSMS of type (u,06) and foster advancements with implications across diverse fields.
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