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Abstract
In this article, we develop a nonlinear operator � � �� �� �
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 so that it is a filtration. Moreover, we define a family 

� � �,� �  and study bounds on Fekete-Szegö functional f �� � alongwith some inclusions and different 
related results. These results can be further extended to symmetric, conjugate symmetric and other 
related setting in the present formulations.
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1. Introduction and Definitions

Simply, the term subordination in the w -plane is actually a generalization of some inequalities on 
the set  . Obtaining information about a function from the properties of its derivatives is significant 
in both ways. Applications and extensions of differential and integral inequalities and subordina-
tion including the related theory have been developed in numerous fields of differential and integral 
equations as well as inequalities along with meromorphic and harmonic functions, operators, Banach 
spaces and others. Our intention is to incorporate these concepts to the recent trends in all such areas. 
The branching processes such as those observed in [1], and [2] have been the subject of the generation 
theory containing a single parameter semi-groups and these semi-groups related with the concept 
of filtration arose in the geometry of Banach spaces [3], finite-dimensional manifolds [4, 5], control 
and optimization theories [6], and one-dimensional complex analysis [7]. The foundations of several 
mathematical fields are presented by geometric function theory, which has been extensively studied 
since the early 1900s. For the past sixty years, a large number of mathematicians have been research-
ing the theory of holomorphic mappings on complex spaces, with applications to functional analysis, 
quantum and classical physics, nonlinear analysis, and differential equations. Equations of motion, 
expressed in the abstract form of a dynamical system of a vector function f , which is a monotone oper-
ator on the underlying space, characterizing the state of the system under investigation, are used to 
convey the fundamental concepts of dynamics. As shown in [8, 9] and [10], analysts have focused on 
the studying of such systems

Take  D C,� � as a set of holomorphic mappings from a domain   to  . For n∈ , we define 

n
j n

j
jf f z z a z zE C E, := : ( ) = , .

=
1

1� � � �
�
�
�

��

�
�
�

��
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�
��

For n =1, we have

H AE C E, := := : ( ) = , .
=1

1
1� � � �

�
�
�
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�
�

��

�

�
��f f z z a z z

j
j

j (1)

Here we note that

f f'(0) = 0 1 = 0,� � �
which are the normalization conditions of f . We take 

   , := .� � � � (2)

Let S A⊂  be such that 

S A:= : = = .1 2 1 2f f z f z z z� � � � � �� �
Let   be the family of analytic functions ψ  such that Re zψ ( ) > 0 and

� z c z z
j

j
j� � � �

�

�=1 ,
=1

.

The mapping L L z z
z0 0: = 1

1� � �
�

 is an example of the functions belonging to the class .  Like the 

Koebe function, L0  is an extremal function for the set  . Related to the class  , an other family 
α  for 0 <1� �  can also be defined as: A function � �� if and only if there exists �1 �  such that 
� � � �z z� � �� � � � �= 1 .1  For g z� �  and h z� �  analytic in , g z� �  is subordinate to h z� � , if for a Schwarz 
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function w z� � , g z h w z z� � � �� �= ,  ∈ .  We denote it by g z� �   h z� �  as seen in [11]. A large number of 
subfamilies are related with the family   and its generalizations including the set ∗  of starlike and 
a related set   of convex mappings. Moreover, both the subfamilies �

�  and α , 0 <1,� �  represent 
starlike and convex mappings of order α  respectively. These families are further studied in such a 
way that the function ψ  maps on to the right half plane or some specific plane regions. On the basis 
of these subfamilies, we develop more general and popular families of close-to-convex, spiral-like and 
other functions. For detail, see [11].

Much of the work in 20th  century has been done in connection with the injective or univalent map-
pings. Various criterion for univalence are developed and other geometric characters of the image 
domain have been studied and considered in detail. For a function f  ∈  defined by (1), the differ-
ential conditions as seen in the inequalities Ref z' � � > 0 or | ( ) 1| 1,f z' � �  lead to the univalence of the 
mapping f  in .

For � � , the Fekete–Szegö functional f a a� �� � �:= 3 2
2 involving coefficients of univalent analytic 

functions and found by Fekete and Szegö is related to the Bieberbach conjecture. Finding similar esti-
mates for other classes of functions is called the Fekete–Szegö problem. As seen in [12], the coefficient 
estimates over univalent functions were studied and it was proved that 

f �
�
�

� � � � �
�

�

�
�

�

�
�1 2 2

1
.exp

In [13], it is seen for f ∈  

f � �� � � ��

�
�

�

�
�max 1

3
,1 .

Also for f � �1
2

, we note that 

f � �� � � ��

�
�

�

�
�max 1

2
,1 . (3)

These results are best possible. As it is seen in [14], we found that for a function f ∈1
2

 such that 

Re
f z
z
� � > 1

2
, we have

f � �� � � �� �max 1,1 .

For a given ς > 0, we introduce a family ς  of analytic functions such that  

f f� � �R F
�

� � �sup | ( )| max( ,| |).1  More specifically, we find interpolation �� �, � � �
��

�

��
1
3
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C A, 1
2

 such that S R1
2

1
2

=∗  and f f� � � � �� �R F�
� � �sup max ,1 .

A mapping f  such that

f z
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is termed as an infinitesimal generator of �s s, 0 ,�� � � � �   for details see [15, 16, 17]. A family   
which is a set of all generators constitutes a semi-complete vector field. Another form of this set   
studied in [7] and also found in [18] is rephrased as:

For f f z� � � � � � E C, : 0, f  ∈ , iff for � �  and � � � � E C,  with Re z� � � � 0, we have 

f z z z z z� � �� � �� � � � �= 1 , .� � � 

Particularly, f ∈  iff, 
f z
z
� �

� , but it is often difficult to establish. For example as in the case of 

the function f z z z� � � �� �= 2 1 ,log  we see that the condition Re f z Re z
z

' � �� � �
�

�

�
�

�

�
�= 1

1
> 0 ensures that 

f ∈ . The condition Re f z' � �� � > 0, proved in [16, 19] also implies the univalence of f  and it is suffi-
cient to assume that f  ∈ . All generators (infinitesimal) are not univalent. Thus, if f' ∈, then it 
does not mean that f ∈.

A filtration of   is a set D D D= : , , ,t tt c d� �� �� �� �  c, d� �� ���� ��,  and D Dt s⊆ , t s≤ . The filtration 
is strict if D Dt s⊂ , t s< .

We are focusing on developing a relationship between f �� � and the set  . We also find a more gen-
eralized mechanism for f ∈  such that f ∈ . We find a connection between the set   and the func-
tional f �� � by determining D� �, > 0� � such that f f� � � �� �D�

� � �sup max = ,1 . Next, we assume 

some general conditions for f ∈  to be in   as below:

Definition 1.1  For f ∈ :  let
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By applying the Definition 1.1, we develop a non-linear differential operator 

� � �� � �� � � � � � � �
� �
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, (5)

based on the functional 

�
�

z
F z
z

z
f z

f z f z z'� � � �
� �

�

�
��

�

�
�� � � � � � � � �= = , 0, 0 \ (6)

where � �, � and � � ��� ��1,1 , we determine conditions on the operator � � �� �� �
�

, f z  so that F  a 
filtration and establish sharp bounds on the modulus of f �� � over these filtration families along 
with some inclusions. We can further extend (2) for symmetric, conjugate symmetric and other related 
functions classes.

2. Preliminaries

We use some results given in the section below.
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Lemma 2.1: Let φ  be holomorphic such that Re z�� � �� � ��� �� > 0, , � � , � � 0 and  
� z c c z z

j j
j� � � �

��= , .
=1

  Then the solution of 

�
�

�� �
�z

z z
z

z
'

� � � � �
� � � � �= ,

is holomorphic in  and satisfies Re z c�� � �� � ��� �� � �> 0 : 0 = . 
For the detail of Lemma 2.1, see [20].

Lemma 2.2  For  � �  as defined in (2), f � � � D C,  and a fixed � �, we have Ref z z� � �> ,� , iff, 
the functional ω  defined by 

�
�

z
f f z
f f z� � � � � � �

� � � � � �
� � �=

0
2 0

.  (7)

Lemma 2.3  Suppose a mapping � �: 0 =1� �  is analytic in . Let � �  and a mapping � : 3C E C� �  
that satisfy 

� �i i z z� � � �, , ; , ,�� �� �� �

where � � � �, , , � , � �
� �

�1
2

,
2

 � �� � 0. If we take � �� � �z z z z z z' ''� � � � � �� ��, , ; ,2  then it implies 

that Re z� � � > 0, z∈. 
For detail of Lemma 2.3 and Lemma 2.2, we refer to [21].

Lemma 2.4  If � z b z
j

j
j� � � � �

�

�= ,
=1

   then b b2 1
21� �  and b b2 1

2 1, , .� � � � �� � �max 

The proof is seen in [13].

Lemma 2.5  Let � � � �  : � z� � <1. If � z� �  gets its maximum at z0 , then 

z z
z

k k
'

0 0

0
= , 1.

�
�

� �
� �

�

For detail, see [22].

3. Sufficient Conditions

In the theorem that follows, we intend to devise some conditions on � � �� �
�

, f  such that F ∈ , where 
F  given by (5).

Theorem 3.1  For � � �, , � , and � � ��� ��1,1 , take 

1
2 2 2:= : ; 1 ; 0 ,w x x y� � �� � � � � � �� � � � � � �� �� � � � �� � (8)

and

2
2 2 2:= : > ; 1 ; < 0 .w x y x� � �� � � � � � �� � � � � � �� �� � �� � (9)
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For D C⊂  defined by

D C D D C D= , 0 , < 0,1 2\ \� �� and (10)

if F f� � � �� � � : ,,� �
� E D  then F ∈  , where F  is given by (5). 

Proof. From the mapping f
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= .
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Now to characterize the function � z� � , by choosing r z= ,� � �  s z z t z z' ''
= , = 2� �� � � �, we check the 

admissibility conditions as: 

� r s t z s t
s r

s
r

r, , ; = 2 1 ,� � �
�
�

� � �� � ��
�

� � �
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� � � � �
�

�

� �
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z z z z z z
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z z

z z
z

' ''
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'

'

� � � � � �� � �
� �� �
� �� �

�
� �

� �
, , ; =2

2

�� �� � � � �1 .� � �� z

Using Lemma 2.3, we have to show that F z z
f z

zf z'� � � �
�

�
��

�

�
�� � ��=
�

  for f ∈  or � � � is the right half 

plane. To meet this end, we prove that 

� i i z� � � � � � � � � � � �, , ; , , , , , 1
2
1 , 0.2�� �� � � � � �� � � �D C Rwhen (11)

We take 

A Re i i z= , , ; = 1
1

2 ,2 2� � � � � � �
� �

� �
� � � ���� � �� � �

� �� �
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�� � ��� ��
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and

B Im i i z= , , ; = 1
2

.2 2� � � � � ��
��
�

� �
�� � � �

� �
�� � � � � �� �

� �� �
�

This implies that 

B

A

� �

� �� �
� �� �
�� � �

�� ��
�

� �
�� � � �
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=
2

2
,

or we can write 

B

A

� �

� �� �
�

�� � �� �
� �� �� �

�� ��
�

� �
�
�

� � � �

� �� � � �1
=

2

2
.

2 2
(12)

Moreover, if we let m A= 1� �� � �� � � , then (12) becomes 

B m m
� � �� � �

� �� � �� �
� �� �� �

��
��
�

�
�
�

�
�

� � � �

�� � � �
=

2

2
,

2 2

or

B m m=
2

2
.

2 2

��
�
�

�
�

� � � �

�� � � �
� �

� �� � �� �
� �� �� �

Therefore, we have 

B m B m� �
�

�
�

�

�
� � � � � � �� �� �

�
�

� � �� � �2 , ,
2= 1

2
1 ., where and

The condition (11) holds, if every point of , where is defined by (10) lies on the graph of 
� � � �

�� � � �

�� � �� �
� �� �� �
2

2
.

2 2

 We further study the range of the set B m� � �, , .� �  If � � 0, > 0,m  then from 

y m= ,2� �
�
�

�
�

�
�

�

�
� (13)

we have �� � �2 = 0� �y m , which shows that 

�
��

�
= 4

2
.

2y y m� � (14)

Also, by using (13) for �
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�
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2
,

2

 we have 
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y y m m

m
=

1
2

=
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2 2
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Taking y m m2 2 0� �� � ��  to write y m m� �� �2 ,�  where m m�� �2�  is assumed positive. Also

B A m m m m

A

� � � �
�

� � �
�

�
� �, , 2

2
2

2= 1
2

1
1
2

2

= 1

� � � �� � � �
�� ��

�

�
�

�

�

�
�

� �� �

� ��� � � �� � �� � � � �
2 2 .

Thus, B A A� � � � � � � �, ,
2 2= 1� � � �� � � �� � �  for all reals, also if y∈, then we select ρ  as given 

in (14), so (13) is satisfied. In the case m ≤ 0, we write

B m m m m A� � � � � � � � � � �, ,
2 2 2 22 = = 1 ,� � � �� � �� � � � � � �� �� � �

where we minimize �
�

�
��

�� ��

�

�
�

�

�

�
�

m 1
2

2

2  about ρ. In the case � � 0 and m ≤ 0, B A� � �, ,
2� �  takes all 

values say X ≥  m m A�� � � � � �� �� � �2 = 1 .
2 2� � � � � �  Thus for m ≤ 0, A � � �� � ��  and the range 

set � � �� �
�

,   lies in the set C D\ 1  shown in (10), where 1 is given by (8). Also if we take m ≤ 0; then 
we write

B m m m m m
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1
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 � �� �

�� � � �� �� � �	 � � 	 �1 .
2 2

For α < 0  and m ≥ 0, A >� � ��� �  and y x2 2 21� � � � �� �� � �� � � � � . In this case, the range set for 

the image domain of � � �� �
�

,   is the set C D\ 2 given by (9). For α < 0,  all graphs of � �
��

�
�

�

�
��

�
�

�m1
2

2

2  

are located in the set C D\ 2 shown in (10), where 2  is given by (9), � � and � �� � �� �1
2
1 .2  In the 

context of Lemma 2.3 and above discussion we conclude that Re z� � � > 0, that is � � � is the right half 

plane, hence F z z
f z

zf z'� � � �
�

�
��

�

�
�� � ��=
�

  for f ∈ .

Remark 3.2  In view of 1, 2 and for F ∈ , � � ��� ��1,1 , � �, �, z� � � \ 0 , if � � 0; 
1
2

: 1
3
2 1 2 ,� � � � �� � � � ��� � � � � � � �� �� �  then, we have: 

Corollary 3.3  For � �, �, � � ��� ��1,1 , F ∈  given by (5), and z� � � \ 0 . If either � �<  for � � 0 and 
Re f z� � �� � � �� �

� � � ��, > , or � �>  for α < 0  and Re f z� � �� � � �� �
� � � ��, < , then F ∈.

4. Maximization Problems

We introduce a new set � � �,� �  associated with the non linear operator � � �� �
�
, .f

Definition 4.1: A mapping F z z
f z

zf z'� � � �
�

�
��

�

�
�� � ��=
�

  given by (5) and z� � � \ 0  belongs to the family 
� � �, ,� �  if 
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Re f z� � �� � �� �� �
� � �, > 1

2
,

where � � � �� � �� �� �1
3
2 1 2  or 

Re f z� � �� � � �� �� �� �
� � � �, > 1

3
1 .

Thus, we observe or note that
For σ =1 and � �� � 2, � � �, = {}.� �  For α =1, γ = 0  and � � ��� ��1,1 , R G� 1,0 = .� �  For α = 0  and 

� � ��� ��1,1 , � �0,� �  is 1 �� �� -convex of order γ
2
, where � �

�
2
3
.

Remark 4.2  For � � 0, � � ��� ��1,1 , �
� � �

�
� �� �2 1 2
3

, we have � �
� � ��

�
� � �

2
 and R G� � �, .� � �

Subsequently, we determine conditions on α , γ  and σ , so that f � � �� � � �� �max ,1 .

Theorem 4.3  Let � �, �, � � ��� ��1,1 , � � � �1 2 < 2�� � � � and  7 4 < 6,� ��  be such that 

�
� � �

=
2 1 2

3
� �� �  and 

2 1 2
3 7 4 6

> 0.
� � � �
� � �
� �� � �

�� � � �� �
 Then for F z z

f z
zf z'� � � �

�

�
��

�

�
�� � �� � �= , :
�

� � �  f ∈

f �
� � � �
� � �

� �� � �
� �� � �

�� � � �� �
�

�

�
��

�

�
�� �max

2 1 2
3 7 4 6

,1 , .

Proof. Let F z z
f z

zf z'� � � �
�

�
��

�

�
�� � �= :
�

 f z� � � 0 and z� � � \ 0  be in the set � � �, .� �  Then � � �� �� �
�

, f z  is 

obtained by using

� � � � �
� �

�� �
z f z f z a z a a z'� ��� �� � � � �� � �

�
� �� ��

�
�

�

�
� �

� = 2 3
2

32

2

2
2

3
2 .....,

�� � � � � � �z
zf z
f z

zf z
f z

a z a
' ''

'� � � �
� �

�
� �
� �

�

�
��

�

�
��

� �� � � �= = 2 { 22 3 66 4 } ... ,2� � � �� � ��� ��� z

and 

z z
z

z a z a a
'�

� �
� � � � � �

� �
� � � �

� � � � �� � � �� � � � �� ��
�1

= 2 2 3 2 6 7 162 3
2 2

2
2

��
�
��

�z2 ...

in (5) as seen below

� � �� � � �� � � �� � � �� � � ��� �� �� �
� � � � � � � � �, 2 0 3 1 2

2 2= 1 2 2 3 ...f z a z a a z (15)

where 

� � � �0 = 3 7 4 6�� � � �� �
and 

� �
� �

� � � �1

2
2= 3 24

2
2 8 7 16 .�

� ��

�
��

�

�
�� � �� � � � �� �



Ashfaq M., et al., Results in Nonlinear Anal. 8 (2025), 96–117.� 105

Now consider that 

�
� �

� �
�

� �
�

� �
�

� �
�z

f z f
f f z

� �
� � � � � � � � �� �

� � � � � � � � �� � � �� �
=

0
0

., ,

, ,

By using (15), we see that

�
� � �

� � �� �

� �

� � �� �
�

z
a z a a a

� �
� �� � �� �

� � �
�

�� �
� � �

�=
2 3 2
2 2 2 2

2 0 3 1 2
2

3 ��� � � �� �
� � ��� ��

�

�

�
�

�

�

�
�

�
2 2 3

2 2
....

2 2
2
2

2
2� �

� � �� �

a
z

If we take � z b z
j

j
j� �

�

�= ,
=1

 then we note that 

�
� � �

� � � �

� �

� � �� �
z

a z a a a
� �

� �� � �� �
� �� � �

�
�� �

� � �
=
2 3 2
2 1 2 2 2

2 0 3 1 2
2

3
��

�� � � �� �
� �� � ��� ��

�

�

�
�
�

�

�

�
�
�

�

�
� � �

� � � �

2 2 3

2 1 2
=

2 2
2
2

2
2

=3

a
z b z

j
j
jj .

On comparison, we have 

b a a

b a

1 2 0 2

2
0

3
1

=
2 2 3

1 2 2
= ,

=
2 1 2

� � �
� � � �

�

�
� � � �

�

�� � � �� �
�� � � �

� �� � �
�

�� � � � � � �

� � � � �

1 2 2 2 2 3
2 1 2

2 2

0
2
2�� � � ��� �� � �� � � �� �

� �� � ��� ��

�

�

�
�

a
��

�

�
�

��� ��= ,1 3 2 2
2� �a a

where 

�
� � �
� � � �

�
�

� � � �

�
� � �

0 1
0

2
1

=
2 2 3

1 2 2
, =

1 2 2
,

=
1 2

�� � � �� �
�� � � � �� � � �

�� �� � ��� �� � �� � � �� �
� �� � ��� ��

� � � � �

� � � �
� � �

2 2 2 3
2 1 2

= .
2 2

3 1 2and

Thus, the Lemma 2.4 leads to

b xb a a x a a x a2 1
2

1 3 2 2
2

0
2
2
2

1 3 3 0
2

2
2= = ,� ��� �� � � �� �� � � � � �

or we see that

b xb a
x

a2 1
2

1 3
3 0

2

1
2
2= .� �

�� �
�

� �

�

If we denote �
�

� �= 1 ,
1

3 0
2�� �x  then we write 

a a b xb3 2
2

1
2 1

2= 1 ,� ��
�

or
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a a b xb3 2
2

2 1
2

1
= , = 1 ,� �� � �

�
where

and we can obtain a level set of functions 

� � �
�

� � � �
� � � �

� � �
, =

1 2 2
=

1 2 2
3 7 4 6

0
1

� �
�� � � �

�

�
�
�

�

�
�
�

�� � � �

�� � � ��

�

��
.

By setting 

� � � � � � �= 2 1 2 3 7 4 6 = 0,� �� � �� � � �� �and

we obtain 

� �
� �

�
= 2

1 2 6 8
11 8

.�
�� � �� �

�

Thus the corresponding level sets are containing rays that start from 
6 8
11 8

,
2 11 8 1 2 6 8

11 8
�� �
�

�� � � �� � �� �
�

�

�
��

�

�
��

�
�

� � � �
�

 and are below the lines 2 1 2 = 0� � � �� �� � �   and  

7 4 6 = 0.� �� �  This leads to the desired proof.

5. On Filtration Problems

Definition 5.1 Here we consider the set 

� �
�

� �
��

� �
�

�0, = : >
2

>
3
, 2

30, ,� � � � � � � � � � � � � � ��
�
�

�
�F z Re f z Re f zor
��
, (16)

of functions F z z
f z

zf z'� � � �
�

�
��

�

�
�� � �= :
�

 f  ∈, f z� � � 0, z� � � \ 0  and Re z
z z

z

'

�
� �
� �

�� � �
�� � � �
� � � �

�
�
�

��

�
�
�

��

1
1

>
2

for 

� �z
zf z
f z

zf z
f z

' ''

'� � � �
� �

�
� �
� �

= . 

Theorem 5.2  For � �1, we have 

F z z
f z

zf z f g z f z'� � � �
�

�
��

�

�
�� � �� � � � � � � � � � ��� ��

�= 0, : = 1 1
�

�
�

� �R A
ff z
f z'

� ��� ��
� �

� 


�

S .

Proof. From (16), we see that

g z f z
f z
f z'� � � � � ��� ��
� ��� ��
� �

�= 1 ,1
�

�
�

or we observe that

zg z
g z

z
z z

z

' '� �
� � � � � �� � � �

� � � �
= 1

1
.� � �

�
� �

where � �z
zf z
f z

zf z
f z

' ''

'� � � �
� �

�
� �
� �

= . Therefore, we reach the conclusion. 
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Next we assume that α = 0  and σ =1 in (5) and obtain

� � �� � �
� �

� �
� �� �

� � � � �� �
� � � � �0,

1 =1 1 ,�

� �
�

�
� �

� �
f z

z z
z

z z z z
z z z

' ' '

'

to consider the class

R A1 0,
10, = , 0, 0 : > 1

3
,� �� � � � � � � � � � � �� ��

�
�

�
�
�

f f z z Re f z \

or

R A1 0, = , 0, 0 : 1� � �� � � � � � � � � �� �
� �� �
� �

�
� �f f z z Re

zf z
f z

zf z
f z

' '

'

'

 \
�� �

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

>
2
.�

The function f  is 1 �� �� -convex function of order γ
2
, as seen in [18] and others. We also get the 

following result as proved in [21]

Corollary 5.3  When � �1 is such that γ < 2, then 

F z z
f z

zf z g z z f z
f z' '� � � �

�

�
��

�

�
�� � �� � � � � � � ��� ��

�
�= 0, =1

2 2
2

� �
��R

�� ��

�
�
�

�

�





�
�

�

z

2
2

,

�
�
S

where f ∈  is such that

f z u
g u
u

du
z

� �
�

� ��

�
��

�

�
��

�

�

�
�
�

�

�

�
�
�

� �

�
�

�

= 1
1

.
0

1

2
2 2

1

�

�
�

�
�

�

Theorem 5.4  Let 0 1� ��  and � � ��� ��1,1  and F z z
f z

zf z'� � � �
�

�
��

�

�
�� � �� � �= 0,
�

� � , f z� � � 0, z� � � \ 0  

such that, 

Re f z Re z
z z

z

'

� � �� � � � �
�� � � �
� � � �

�
�
�

��

�
�
�

��
0, =

1
1

>
2
,�

� �
� �
� �

�

where � �z
zf z
f z

zf z
f z

' ''

'� � � �
� �

�
� �
� �

= . Then F � �1
2

. 

Proof. We use Lemma 2.2 to have Re
zF z
F z

' � �
� �

> 1
2
, iff the function ω  defined by (7) is such that 

�
�

� �z
z

z
zf z
f z

z d
dz

f z
'

'� � �
� � � � � �

� �
� � ��� ��=1 1 , = ,ln

which on differentiation leads to 

1
1

= , 1 =
1

.
� � � � � � � � � � �

� �
� �

� � ��
� �

�
�z

z z
zf z
f z

z z
z

''

'

'

and (17)
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We make use of the Lemma 2.5 to have our desired task. We assume the mapping ω  is not a holo-
morphic self-mapping. Then for z0 ∈  : <1 : < 0� z z z� �  and � z0 =1.� �  By Lemma 2.5, we have 

z z
z

k
'

0 0

0
= 1.

�
�

� �
� �

�

Using notation � z a ib0 = ,� � �  a b a b, : =1,2 2� �  we have

Re
z

a
a a b

1
1

= 1
1 2

= 1
2
.

0
2 2� � �

�
�
�

��

�
�
�

��

�

� � �� ��

When 0 1� ��  and � � ��� ��1,1 , then (17) yields 

Re f z Re
t z

z
� � �� � �

�� � � � �� �
��

�
�

�
�
� � � �� �

�0, 0
0

0
2

= 1
2

1
1
2

1 2�
� �

� �

� �

�
��

�
��



�
�

�

�
��



�
�

�
�� �
�� �

� 	=
2

1
2 1 2 2

0,� � �
�

�k

which is a contradiction and it leads the desired proof. 
For the choices of α = 0  and σ =1, we have the following corollary already seen in [18, 21].

Corollary 5.5  If 0 1� �� , σ =1 and F z z
f z

zf z'� � � �
�

�
��

�

�
�� � �� � �= 0,1

�

�  that is, 

Re f z Re
zf z
f z

zf z
f z

' ' '

'� � � � �
� �

� �� �
� �� �
� �

�

�
�

�
�

�

�
�

�
�

0,
1 = 1 >

2� � �
� ,,

then we have the assertion Re
zf z
f z

' � �
� �

> 1
2
, that is f � �

�
�

�

�
�

�
1
2
. 

Theorem 5.6  For � �< 1,1 �   � �� �0, 0, .1� � � � �

Proof. Let F z z
f z

zf z'� � � �
�

�
��

�

�
�� � �� � �= 0, :
�

� �  f  ∈, f z� � � 0, z� � � \ 0 . Then 

Re f z� � �� � � � ��� ��0, >
2
: 2

3
, 1,1 ,�

� �
�

�
�

implies that there exists � z� �� � �   such that 

� � �� �
�� � � �
� � � �

� � � � � � �
� �

�0, =
1
1

=�
� � �

� �
� � �f z

z z
z

z z
zf z
f z

z d
dz

' '

; lln f z

z
z

z z

' � ��� ��
�

�
��

�

�
��

� � �
�

�� � � �
� � ��� �� �� � � �

= 1
1

1
1 1 1


� 



 � 
 ��� ��
�

�
�

� � �
�� � � � �� ��

�
�
� � �� � � �

�� � � � �� �
= 1
1

1 1 1

1 1
.




� 
 � 


� 
z
z z

z



Ashfaq M., et al., Results in Nonlinear Anal. 8 (2025), 96–117.� 109

Also, we note that 

� � �� � �
� � �

�� � � � �� ��
�

�
� � �� � � �

�� � �0,
1
2

= 1
1

1 1 1

1 1�
� �

�

� � � �

� �
f z

z
z z

zz� �� �
�
1
2
,�

or we can write

� � �� �
�� � � � �� ��

�
�
� � �� � � � � �� � � � �� �

0,

2

=
2 1 1 2 1 1 1

2 1
�

�
� � � � � �

f z
z z z

��� � � � �� �
�

� �
�

1
1
2
.2

z

By using (7), we note that

�
��

�
�

�
�

�
�

�
�z

f f z
f z f

� � �
� � �� � � � � �� �

� � � � � � � � � �� �
=

0
2 0

.0, 0,

0, 0,

That is

�
�

� ��
�

�

�
�z

f z
f z

� �
� � � � � �

� � �� � � �
= ,0,

0,
(18)

and similarly for γ1, we consider that 

�
�

� ��
�

�

�
�1

0, 1

0, 1 1
= ,z

f z

f z
� �

� � � � � �
� � �� � � �

is holomorphic in  and zero at origin. We write (18) as

� � � �� �
�

�
�z f z f z� ��� �� � � � � �� ��� �� � � �� � �0, 0,= . (19)

Similarly, we see that 

� � � �� �
�

�
�

1 1 0, 1 0, 1
= .z f z f z� ��

�
�
�

� � � � �� ��
�

�
�

� � �� � � (20)

Furthermore, we define the function 

� � �� �

� �
� � � � ��� ��

�

�
��

�

�
��

� �
0,1
2

=

1
2

1

�

�

�
�

f z
z

zf z
f z

z d
dz

f z

z

'
'

'

ln

ff z
f z

z d
dz

f z

zf z
f z

zf z
f z'

'

' ''

'� �
� � � � ��� ��

�

�
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where � �z f z� � � � � � �= 2
0,1
2

. Then (19), implies that 
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1 1 = 1 2 1 1�� � � � ��� �� � � �� � � � ��� �� � � � � � ��� �� �� � � � � � � � � �� � �z z z z z ��� z� � , (21)

where � �z
zf z
f z

zf z
f z

' ''

'� � � �
� �

�
� �
� �

= . Solving (21) to get the value of � z� � as 

�
�
�
�

� �

� �
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�
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�z z
z

z
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�

� � �
� � �� �
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= 1 2
1

1
1 1 1 1 �� z� ��� ��

. (22)

Also equation (20) leads to 

1 = 1 2
1

1 1
1 1

1

1

1 1�� � � � �� � � � �
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z z

z

z

z
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From (22) and (23), we observe that 
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(24)

On contrary, we assume the mapping ��1
z� �  does not a self mapping. Therefore, there exists z0 :∈  

��1
<1z� �  for z z< 0  and ��1 0 =1.z� �  Substitute z z= 0  in (24) to have 

�

� �
�

� �

z
z z

� �
� � �

�
� � �1

= 1
2
, 1
1

= 1
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,

and

�
�

�
�

�
�
�

�

�
�
�

�

�

1

1
0

0

01 1 1
1
1 1�

�
�

�
�
�

�
�
�

� � �
�

� � �� �
� � �� �

�
�

Re z Re
z

z
Re

��

�

�
�

�

�

�
�

�

�

�

�

�

�

z
z

Re
z

z
Re

0

0

1

1 0

1 0

1

1

1

=
1

1

1 1

� �
� � �� �

�

� � �� �
� � �� �

�
�

11 0

1 01
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z
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or we note that

�
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.

�
�

�
�
�
�

�
�
�

� � � �
�� �

�
�� �

Re z

By using Theorem 5.4, we obtain 

�
�

�
�

�
�
�

�
�

�
�

�
�
�

1

1
0

1
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z
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=
2 1

.1

1

�
�

which is a contradiction. Therefore, � � �0, ,1 1� � � �� � is a filtration. 
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Corollary 5.7  For σ =1 and � � � �< 1, 0, 0, .1 1 1 1� � � � � � 
For detail, see [21].

6. Interpolation of f �� �
We work out certain interpolation results regarding some estimate of f �� � given by (3).

Theorem 6.1  If the set � � �0, , 1,1� � � ��� ��� � such that R G� �0,� � �  is a filtration, then 

F
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�� � �� �
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R
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2
3 4 6

,1sup max , 

where F z z
f z

zf z'� � � �
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�
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�

�
�� � �= .
�

 

Proof. In the above Theorem 5.6, we have seen that � � �0, , 1,1� � � ��� ��� � is a filtration of  . We take 
α = 0  and apply the Theorem 4.3 to reach the desired conclusion.

For α = 0 , σ =1 and � � , we get the following special case as seen in [21].

Corollary 6.2  If the set R G1 0,�� �� � �  so that R S1 1
2

0,�� � � �  is a filtration, then 

F
f

� � �
� � � �
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 and � �. In the context of (3), the sup is obtained for γ = 0  and γ =1.

The above estimate is sharp when � �� �0,1  and for f1, f2 1 0,� � � �  such that 
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2
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are obtained from (5) and fulfill the Briot Bouquet equation. Hence, f1
1 ,� �� � � �  � �  and 

f2

2
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7. On Filtrations

For f f z z� � � � � � �, 0, 0 , \  we consider 
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�f Re f z
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We show that S R1
2

,1
�

�� � �
�  for any α < 2.

Theorem 7.1  For F z z
f z

zf z'� � � �
�

�
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�

�
�� � �� �= ,1
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2
,  and S R1

2
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� � ��� ��1,1 . The sharp result holds for the mapping z zn1 .
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.

Theorem 7.2  For � �< 1,1 �  we have  � �� � � �,1 ,1 .1 1�� � � �� �
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shows that there exists a mapping �� z� �  in such a manner that from (7), we write
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Then, from above functional equation, we see that
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Also we have
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By using (26) in (25), we observe that
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Similarly in case of α1, we have 
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Equating (27) and (28), we observe that 
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or equivalently we have 
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Obviously ��1
0 = 0� � and on contrary we suppose that the mapping ��1

z� �  is not a self-mapping. 
Then for z z0 1

: <1� � � ��  ∀ z z< 0  while ��1 0 =1.z� �  Substituting z z= 0  in (29) to have
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Now applying Theorem 5.4, we see that 
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 This is an obvious contradic-

tion to our supposition. Therefore, the proof of our desired result is concluded.
The following theorems turns out that the set � �
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,1�  with 1

2
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certain generators along with sharp estimates over the quantity f �� � .
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For a fixed z∈ , the mapping � z� ��  is equivalent to Rez f z f z'� �� ��� �� � �� > 0. In the pro-

spective of our assumption, there is a point z0 ∈  so that Rez f z f z z z'� �� ��� �� � �� < 0 : < 0  while 

Re z
f z

f z'0

0
0 = 0

� �
�

�
��

�

�
�� � �
�

 and hence, � z0 =1.� �  Therefore, by using Lemma 2.5, we find k ≥1, such that 

z z t z'
0 0 0= .� �� � � �  A straightforward calculation leads to

� � �� � �� � � �
� �

�
� �
� �

�

�
��

�

�
���� �

� � �,1 0
0 0

0

0 0

0
= 1f z

z f z
f z

z f z
f z

' ''

' ��
� �

�

�
��

�

�
�� � �

� � �
� � �

�
� �

� � �
�

�

�
�

�
�
�

�
z
f z

f z

z
z

z z
z

'

'

0

0
0

0

0

0 0

0
=

1
1 1

zz z
z

z
z

t z
z

'
0 0

0

0

0

0

0

1
1

=
1

1

�
�

� �

�
�

�
�

�

� �
� � �

�
�

�
��

�

�
��

�� �

� � �
� � �

�
� �

� �� �
�

� �
� � �

�
�

�
��

�

�
�� �� �1 1
1 .0

0

t z
z

�
�

� �

(30)

Using � z a ib0 = ,� � �  a b a b, : =1,2 2� �  we have
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Using (30), we simplified that 

Re z Re
z
z

t z
z

t z
z

� � �
� � �
� � �

�
� �

� � �
� �

� �
��� �

� �
�
�

�
�

�
�
�,1 0

0

0

0

0

0=
1
1 1 1 00

1 .

= 1 .

� �
�

�
��

�

�
�� �� �

�

�
�
�

�



�
�

�� �

�

� �

Since F z z
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� � �,1 0 = 1 , so we have α < 1

2
. Thus 

using (10), we see that R G� � �,1 ,�� � �  whenever � �
1
2

. For the choice of α =1, we find that
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and for the choice of α = 1
2
, we see that
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In both of the above situations, we see that f � �� �� � �,1 , which proves that the semi-
group � �� � �s s: 0  , and it satisfies the problem given in (4). The function or mapping 
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is clearly a generator (infinitesimal) for a single parameter set of semi-groups. Thus for each z∈
, the problem in (4) is obviously take or assume a solution (unique) � �= s z� �, s ≥ 0  in such a way that 
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From these simplifications and for the assumption � �=1 � , we note that 

� �
��

�
�

�

�
� � � � �� � � � � � �

� � � ��
�

��
� �
�

��
�

�
�

�
� �
�

�

� �
�2
,2

=
1 1

2

f z z
z z

z

'

��
�
�
�

� .

In view of Lemma 2.1, we observe the solution � �z z� � � �=  is holomorphic with 
Re z Rez f z f z'� � �� � � ��� �� � ��= > 1

2
> 0, z∈ . Therefore, in the above situation, the operator � � �� ��� �
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generates a single parameter semi-group and thus the set � � �,1 �� �� � is equivalent to  . Also, if we 
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