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Abstract

In this article, we develop a nonlinear operator 37 ( f )(z) :

z(¢ (Z) + z¢/ (2))
#(2)+2¢ (2)

<, (B)(e) =) san(e) -5 o)

>

based on the functional ¢(2) = [fi)] f (z) :z € B, the open unit disk, o,y eR, o € [—1,1] and find

(2
conditions on the functional L%j f (2) so that it is a filtration. Moreover, we define a family
z

R, (a,y) and study bounds on Fekete-Szegé functional F; (n) alongwith some inclusions and different
related results. These results can be further extended to symmetric, conjugate symmetric and other
related setting in the present formulations.
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1. Introduction and Definitions

Simply, the term subordination in the w-plane is actually a generalization of some inequalities on
the set R. Obtaining information about a function from the properties of its derivatives is significant
in both ways. Applications and extensions of differential and integral inequalities and subordina-
tion including the related theory have been developed in numerous fields of differential and integral
equations as well as inequalities along with meromorphic and harmonic functions, operators, Banach
spaces and others. Our intention is to incorporate these concepts to the recent trends in all such areas.
The branching processes such as those observed in [1], and [2] have been the subject of the generation
theory containing a single parameter semi-groups and these semi-groups related with the concept
of filtration arose in the geometry of Banach spaces [3], finite-dimensional manifolds [4, 5], control
and optimization theories [6], and one-dimensional complex analysis [7]. The foundations of several
mathematical fields are presented by geometric function theory, which has been extensively studied
since the early 1900s. For the past sixty years, a large number of mathematicians have been research-
ing the theory of holomorphic mappings on complex spaces, with applications to functional analysis,
quantum and classical physics, nonlinear analysis, and differential equations. Equations of motion,
expressed in the abstract form of a dynamical system of a vector function f, which is a monotone oper-
ator on the underlying space, characterizing the state of the system under investigation, are used to
convey the fundamental concepts of dynamics. As shown in [8, 9] and [10], analysts have focused on
the studying of such systems
Take H(H)),(C) as a set of holomorphic mappings from a domain I to C. For n e N, we define

j=n

H,(E,C):= {f f(R)=z+ Zaj+1zj+1, ze E}
For n=1, we have
H(E,C)::A::{f:f(z):erZaszj”, ZGE}. (1)
=1
Here we note that
f(0)=f(0)-1=0,
which are the normalization conditions of /. We take
H(E,E):=H(E). (2)
Let S — A be such that
S:Z{feA:}‘(2'1)21‘(22):>z1 222}.
Let P be the family of analytic functions v such that Rey(z) >0 and

y/(z)=1+icjzj,zeE.

j=1

The mapping L, : L, (2) ~1*z 1s an example of the functions belonging to the class P. Like the

1-z
Koebe function, L, is an extremal function for the set P. Related to the class P, an other family
P, for 0<a <1 can also be defined as: A function y € P, if and only if there exists y; € P such that

v (2)=(1-a)y,(z)+a. For g(z) and h(z) analytic in E, g(z) is subordinate to h(z), if for a Schwarz
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function w(z), g(z) = h(w(z)),z e E. We denote it by g(z) < h(z) as seen in [11]. A large number of

subfamilies are related with the family P and its generalizations including the set 8" of starlike and
a related set C of convex mappings. Moreover, both the subfamilies S, and C,, 0 <a <1, represent
starlike and convex mappings of order a respectively. These families are further studied in such a
way that the function v maps on to the right half plane or some specific plane regions. On the basis
of these subfamilies, we develop more general and popular families of close-to-convex, spiral-like and
other functions. For detail, see [11].

Much of the work in 20" century has been done in connection with the injective or univalent map-
pings. Various criterion for univalence are developed and other geometric characters of the image
domain have been studied and considered in detail. For a function f € A defined by (1), the differ-
ential conditions as seen in the inequalities Ref (z) >0 or |f(2)-1I<1, lead to the univalence of the
mapping f in E.

For n € C, the Fekete—Szeg6 functional F; (n) = a, —na’ involving coefficients of univalent analytic
functions and found by Fekete and Szegé is related to the Bieberbach conjecture. Finding similar esti-
mates for other classes of functions is called the Fekete—Szego6 problem. As seen in [12], the coefficient
estimates over univalent functions were studied and it was proved that

‘.7-} (n)‘ <1 +2exp[—%}.

In [13], it is seen for f € C

‘.7-} (n)‘ < max(%,h —n|j.

Also for f € S], we note that
2

1
17 (n)] < max(g,ll —nl]- ®)
These results are best possible. As it is seen in [14], we found that for a function f € A, such that
2
ReM > l, we have
z 2

‘.7-} (n)‘ < max(l,

1- 77|)

For a given ¢>0, we introduce a family 7R of analytic functions such that
SqueRg | 7+ () | < max(g,|1-1n1). More specifically, we find interpolation {Rg}, ce [é,l} of the families
C,A, such that Sl* =R, and SUPfe ‘ff (n)‘ < max(g,|1 —n|).

A2 mapping f sZuch tilat

f(2)=tim [2-0.(2)], 520

and ¢, is a unique solution of the problem (Cauchy) described by

Z(0,(2)+f(0.())=0

0,(2)=2,5=0

) (4)
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is termed as an infinitesimal generator of {gos,s > O} c H(E), for details see [15, 16, 17]. A family G
which is a set of all generators constitutes a semi-complete vector field. Another form of this set G
studied in [7] and also found in [18] is rephrased as:

For f e H(E,(C) : f(z);t 0, f egG,ifffortelE and ¢ H(E,C) with Re¢(z)2 0, we have

f(z)=(r —z)(z;—l)d)(z),zeE.

z
Particularly, f e G iff, f( ) e P, but it is often difficult to establish. For example as in the case of
z

the function f(z) =z-2log (1 - 2), we see that the condition Re(f' (z)) = ReG rz

J >0 ensures that
-z

f €G. The condition Re( f (z)) >0, proved in [16, 19] also implies the univalence of f and it is suffi-

cient to assume that f €G. All generators (infinitesimal) are not univalent. Thus, if f € P, then it
does not mean that f € G.

A filtration of G is a set ® = {’Dt ‘te [c,d] D, C Q}, c,de [—oo,+oo] and ©, c D, t <s. The filtration
is strict if ®, c D, t <s.

We are focusing on developing a relationship between F; (n) and the set G. We also find a more gen-
eralized mechanism for f € A such that f € G. We find a connection between the set G and the func-

tional .7-}(11) by determining {Qg,g >0} such that sup; ‘.7-} (n)‘ = max(g,|1—n|). Next, we assume
S
some general conditions for f € A to be in G as below:

Definition 1.1 For fe A: let

=gtz 53] 1= o] e 1

so that Re [31 (z)] >0, Re[g2 (2)} >0,-1<o0<1l,zeE\ {0} Moreover, we let F' has no zeros in E.

Therefore, F e A is in G iff Re[F (Z)} =Re|| —— | f(2)]>0.
2 f(2)

By applying the Definition 1.1, we develop a non-linear differential operator

T, ()e)=-a)ostle)HE)p oy P H D, ®
based on the functional
6(2)= Fiz) = [%JG f(2).f(2) %0,z e E\ {0} ©)

where a,y eR and o e[—l,l], we determine conditions on the operator Sz’y (f)(z) so that I a
filtration and establish sharp bounds on the modulus of F; (n) over these filtration families along
with some inclusions. We can further extend (2) for symmetric, conjugate symmetric and other related
functions classes.

2. Preliminaries

We use some results given in the section below.
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Lemma 2.1: Let ¢ be holomorphic such that Re[yqﬁ (2) + r] >0,y, 7eC, y#0 and
1) (z) =c+ z;ozlcjzj,z € E. Then the solution of

is holomorphic in E and satisfies Re[yl// (z)+ r} >0:y(0)=c.
For the detail of Lemma 2.1, see [20].

Lemma 2.2 For H(E) as defined in (2), f € ’H(]ID,(C) and a fixed T € R, we have Ref(z) >1,ze B, iff,
the functional o defined by

(o= L1012

_2r—f(0)—f(2)EH(E)' (7)

Lemma 2.3 Suppose a mapping ¢ : ¢(O) =1 is analytic in E. Let Q c C and a mapping ¥ : C>* xE - C
that satisfy

‘P(ip,,u,9+i9;2)q£§2, (zeE),

2
where p,u,0,9eR, u<-

1+2p , u+6<0. If we take ‘P(q’) (2),2(]5' (z),zzqﬁ” (2);2) € Q, then it implies

that Re¢ (z) >0, zeE.
For detail of Lemma 2.3 and Lemma 2.2, we refer to [21].

Lemma 2.4 If ¢(z)= ibjzj e H(E), then |b2| <1- |b1|2 and ‘bZ —nbf‘ < max (1,|n|),n eC.
=1
The proof is seen in ][13].
Lemma 2.5 Let 9 e H(E): |go(z)| <l1. If|<p (z)| gets its maximum at z,,, then

Zo(/’, (20)

For detail, see [22].

3. Sufficient Conditions

In the theorem that follows, we intend to devise some conditions on Sj,y ( f ) such that F € G, where
F given by (5).

Theorem 3.1 For a,o,y €eR, and o € [—1,1], take
D, ::{wza—y—gaZx;(x—6+y+a(6—1))2—a22y2;a20}, (8)
and

D, :={w:x>c7—7/—g6;y2 S(x—a+y+a(a—1))2—a2;a <0}. 9)
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For D c C defined by
D=C\D;,a>20andD C\D,,a<0, (10)

if FeA: 3oy (f)(E) c D, then F € G, where F is given by (5).

Proof. From the mapping feA:@:(fi)j f (z) and qﬁ(z):( b ] f (2), such that f(z)#0,

(2 /(2)

zeE\ {O}, we observe that

and
In the context of (5), we have
= (1-a)o +ap(2)- yff(z()z) (1-a _7)((2:;—(22)?-

Now to characterize the function ¢(z), by choosing r =¢(z), s=z¢ (z),t =2°¢ (z), we check the
admissibility conditions as:

and

Using Lemma 2.3, we have to show that F(z) = [ i )] zf (2) egGfor fe Aor ¢(E) is the right half

f(z
plane. To meet this end, we prove that
‘I’(ip,,u,@ + i19;2) gD c C,whenp,,0,9eR,u< —%(1 + p2),u +6<0. (11)
We take

A=Re‘P(ip,,u,O+i9;2)=(1—a)6—%[(0+2y)y+9p],
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and

B:Im\{;(ip“u’g+i9;2):gp+y_u—(1—a_7/)19#_(29-1-22/1)/).
P p t+u

This implies that

i
P :9y—(9+2y)p
A—(l—a)c (0+2/,t),u+8p’

B-¢p-

or we can write

B-g _% o (9+2y)(p2+/,t2)

A-(1-a)o p p(;9p+(9+2,u),u).

Moreover, if we let m= A — (1 - a)c; +y, then (12) becomes

(12)

u _m-y (0+2/,t)(p2+/,t2)
pp (p+(0+2u)p)’

Beco-TH—(m_—
- (m-y)

or

Therefore, we have
B=p a+rmt =B G(m),wherepeRandyS—l(1+p2).
p2 H,pP5 2

The condition (11) holds, if every point of ), where is defined by (10) lies on the graph of
(9 + 2/.1)(p2 + ,uz)
(9/) + (9 + 2;1)/,1)

. We further study the range of the set B, o (m) If « 20,m >0, then from

. —

we have ¢p® — py + um =0, which shows that

_ iy —dgum (14)

2g

Jo}

Also, by using (13) for u < , we have

—(1;-/)2)

_ (1+0°) —yxy’-(m-2)m
y=epmmi— orp= 2(m—2)
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Taking y* — (m - 2g)m >0 to write y >, /(m - Zg)m, where (m - Zg)m is assumed positive. Also

(o7

2p°

‘By,p,e (A)‘ =la —m217(1+p2)

|p|>[am ]|p|> (m—2g)m

:\/(A—(l—a)c+y—a)2—a2.

Thus, ‘By’pﬂ (A)‘ = \/(A - (1 - a)a +y - a)Z —a?® for all reals, also if ¥ € R, then we select p as given

in (14), so (13) is satisfied. In the case m <0, we write

‘BM’Q (m)‘ZJ(m—Zg)m =,I(m—a)2 -a’ =\/(A—cr+7/+oc(cr—1))2 -a?,
m(1+p2)
2p*

where we minimize {a - J|p| about p. In the case o >0 and m <0, ‘Bu,pﬁ (A)‘2 takes all

values say X > (m—2g)m = (A—O' +y +a(6 —1))2 —a®. Thus for m<0, A<o -y —¢o and the range
set 37, (E) lies in the set C\ D, shown in (10), where D, is given by (8). Also if we take m <0; then
we write

= 1+ p? 1+ p”
‘Bu,pse(m)“{“‘mv}hﬂﬂd[m 2 —an (m—-25)m
:(A—G+}/+(X(G—]_))2_a2‘
Fora <0andm=0, A>0 -y -co andyz2(x—0'+}/+06(0'—1))2—a2.Inthiscase,therangesetfor

el

are located in the set C \ D, shown in (10), where D, is given by (9), peR and u < —%(1 + p2). In the

2
the image domain of Say (E) is the set C\ D, given by (9). For a <0, all graphs of —{a -m 2+ /;
p

context of Lemma 2.3 and above discussion we conclude that Reg¢(z)> 0, that is ¢ (E) is the right half

plane, hence F(z)=( z )J zf (z)eg for fe A.

f(z
Remark 3.2 In view of D, D, and for FeA, cre[—l,l], o,y €R, zeE\{O}, if a=0;

%(a +y)20—y—gcr:y Z%(20‘—(X(1+26)), then, we have:

Corollary 3.3 For a,y €R, o €[-1,1], F € A given by (5), and z € E\{0}. I either y <a for a 20 and
Re37 (f)(z)>cr—y—ga, ory>a for a <0 and ReJ (f)(2)<6—y—gc7, then F €G.

4. Maximization Problems

We introduce a new set R, () associated with the non linear operator 37 (f).

Definition 4.1: A mapping F(z) =| 2 zf (z) e A given by (5) and ze E\ {O} belongs to the family
R, (a.7), if f(2)
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Re3:, (£)(2)> 2 (a +7),

where y > %(20 —a(l+ 26)) or

1
Re37 (f)(z)>§(o+a(1—cr)).
Thus, we observe or note that
Foroc=1land a+y =2, R, (a,y)={}. For a =1, y =0 and O'E[—l,l], R, (1,0)=Q. For a =0 and
o= [—1,1], R, (O,y) 18 (l—y)-convex of order g, where y > 236.

20 —a(1+20)
3
Subsequently, we determine conditions on a, y and o, so that ‘.7-} (n )‘ < max(g,|1 —n|).

, we have a2i20—;/—g0' and R, (a,}/)cg.

Remark 4.2 For a >0, ce[-1,1], y <

Theorem 4.3 Let a,yeR, GE[—l,l], a(1—26)—}/<—26 and To+4y <6, be such that

yo2omallego) o 2o va(lot0) sy o
3 (3-0)(7a +4y -6)

TZ)] zf (z)eRcy (a,y): feA

26+a(1—20')—7/
< 1- .
‘.7-}(n)‘<max[(3_6)(7a+4y_6),| n|],ne©

Proof. Let F(z) =

f(zz)J zf (2): f(2)#0 and zeE\{0} be in the set R, (a,7). Then 37 (f)(z) is

obtained by using

az’ [f(Z)TU f’ (Z)Za +oaa, (2—a)z+0{62 ;36 ag +(8—0)a3}22 +....,

y(p(z) = y[a z}}:((:)) - lej((zz))] = y[o +a, (O' —2)2 +{a, (26 —6) —(G —4)},22 +...],

and

2 (2)

2
1+G—g0(z) +g0(z)=cr+2a2(6—2)z+[3a3(26—6)+(c72 —7G+16) a%}zQ +...

in (5) as seen below
30, (F)(z)=0+(1-0)a+(o-2)(2-3a -7)az+[nga, ~naj |2 +... (15)
where
n,=(3-0)(7a +4y -6)
and

2
,71:_a(w]_y(%_g)_(ez_mle).
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Now consider that
~0C
3.

, (f)
32, ()

+3

o(2)=

-0, (0
)30, (1)) -(+7)

(
0

By using (15), we see that

o(2)=

(2_3a_y)(6_2)a22+ (an3—nla§)a3 +(G_2)2(2—306—]/)2a§ 22+
20 +a —2a0 —y 26 +a-200 -y [2U+a—2ac—y]z

If we take a)(z) = ijzj , then we note that

J=1

)=(zsay><az>“22+{ o +(“2)2(23M)2a§]2'2 = Ybe
Jj=3

o(z 2
2G+a(1—26)_?’ 20 +a—-2a0 -y |:2G+O((1—26)—7:|

On comparison, we have

. _(0-2)(2-3a-7)

Lo a(1—20')—}/+26 2 = T2
_ 1o m[a(l-20)-y+20]-(c-2) (2-8a-7)
b, = a, - o2
26"'0‘(1_20)_7 |:26+OC(1—2G)—}/]T]0

- 2
a! [as —72a2],

where
_(0-2)(2-8a-7) _ n,

TO_ ’Tl_ ’
a(1—26)—}/+26 a(1—2c;)—y+2cr
ThI:Ot(l—26)—j/+2G:|—(G—2)2(2—3O{ —y)2

T, = and 7, =7;7,.

|:2G+O£(1—2U)—7/:|
Thus, the Lemma 2.4 leads to

b

‘bZ - xblz‘ = ‘rl [as - rzag] - xrgag‘ = ‘rlaS - (1'3 +xtl )a22

or we see that

2
(e, +xel) |
ay —————a,|.
31

2| —
b, —xb?| =z,

1 .
If we denote nn = —(13 +xT] ), then we write
T

b

‘aS —nag‘ = |T1—|‘b2 —xb}
1

or
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2| _ 2 _ 1
‘aS —naz‘ = |r”b2 —xb ‘,where |r| =—,
|Tl|
and we can obtain a level set of functions

f(a,y):{ ( n, r: o(1-20)+ 20—

’ a(l1-20)+20 -y (3-0)(Ta+4y -6)

By setting
y=20+0a(l1-20) and (3-0)(7a+4y-6)=0,
we obtain

(1-20)(6-80)
11-8

y =20+

Thus the corresponding level sets are containing rays that start from
((6—80) 20 (11-80)+(1-20)(6-80)

11-8° 11-8c
Ta +4y —6=0. This leads to the desired proof.

] and are below the lines 20 +a (1 - 26) —y=0 and

5. On Filtration Problems

Definition 5.1 Here we consider the set

R, (0.7)= {F(z) R, (1)(2)> LorRet, (1)(2)> C 7> %’} 16)
of functions F :[f 8 ] : f €A, f(2)#0, ze E\{0} and Re{w(z)+%}>% for
e 755
Theorem 5.2 For y %1, we have

(5] @m0 reas a-fro-rer L e,

] [T
o )_[1+o—f( )] f(z)
or we observe that
f&hwwﬂﬁ”ﬁ%%J

of (2) = (2)
1) f()

. Therefore, we reach the conclusion.
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Next we assume that o« =0 and o =1 in (5) and obtain

'

) z(¢ (z)+2¢ (2))
o (z) +z¢ (2)

3o, (F(=)=1- ~(L-y

to consider the class

R (0)={f <A (2) 0.2 BN o} R, (1)e)>

or

R, (0,7)= feA,f(z);tO,ze]E\{O}:Re{(ly)(Zf,’(z)) Zf’(z)}%.

The function [ is (1 —y)-convex function of order g, as seen in [18] and others. We also get the

following result as proved in [21]

Corollary 5.3 When y #1 is such that y <2, then

2y
F(z):(%J of (2)eR, (0.7) = g(2)=2[f (z)]%f{f(;)ry s,

where f € A 1is such that

(1 e[ 8) 2

f(z)— Eou [ ” ] du
Theorem 5.4 Let 0<y <1 and o e[-1,1] and F(z)= (f(z )J zf (z)eR,(0,7), f(z)#0, ze E\{0}
z
such that,
1 :
R3S, (£)(2) = Re {(p(z) Aor)e () g)_zz ((:))} -7,

where <p(z) =c 2}}:((22)) - Z]]:, ((5) . Then F e S%*.

zF' (z) 1

Proof. We use Lemma 2.2 to have Re 7 ( ) > 3’ iff the function @ defined by (7) is such that
z

o(z)=1- go(lz),(p(z)=d%—z%1n[f (2)],

which on differentiation leads to

1_w(Z)=¢(z),and1—(p(2)+ f'(z) =1 (2) (17)
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We make use of the Lemma 2.5 to have our desired task. We assume the mapping ® is not a holo-
morphic self-mapping. Then for z, ¢ E ‘a)(z)‘ <1: |2| < |20| and ‘a)(zo )‘ =1. By Lemma 2.5, we have

zy0 (2)
(2,)

Using notation o(z,)=a+1ib, a,beR:a”+b* =1, we have

=k2>1.

DO | =

Re 1 _ 1-a _
1-0(z) 1—2a+(a2 +b2)

When 0<y <1 and o € [—1,1], then (17) yields

Re3], (f)(ZO)ZRe lcr+ (1—7)(—154 (Zo)) 4

2 2(1+25) 2~

which is a contradiction and it leads the desired proof.
For the choices of « =0 and o =1, we have the following corollary already seen in [18, 21].

Corollary 5.5 If0<y<1,o0=1and F(z)= Z zf (2)e 0,7) that is,
2) b

ReS}),yf(z)=Re{y%S))+(1y)(zf' (2)) }>%,

. zf (2) _1 . (1
then we have the assertion Re >— thatis feS"| = |.
f(z) 2 2

Theorem 5.6 For y <y, <1, R, (0,7/) cR, (0,7/1).

Proof. Let F(z)=( z )J zf'(z)eRG(O,y): feA, f(z);éO, zeE\{O}.Then

f(2)
Re3;, (£)(z)> L7220 o e[-11],

implies that there exists a)(z) € H(E) such that

% 0022 o (ol LE el (2]
1 1-1)o(:)
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Also, we note that

Sg’y(f)(z):2[(1+0)(1—a)(z))]+2(1—y)a)(2);(1+0)(1—co(z))z+ §

2(1+0)(1—w(2))

That is
o, (2) = o2 )
35, (F)(z)+o -7
and similarly for y,, we consider that
R G
" 30, (F)z)+o-71~
1s holomorphic in E and zero at origin. We write (18) as
[0, (2)][o -7+ 35, (1)(2)]= 35, ()(2) -0 (19)
Similarly, we see that
o, (@)|[e-n+3%, ()| =50, (H(E)-0 (20)

Furthermore, we define the function

or

—-z—In

° f(z) dz
where ¢(z) = 23’3 (f)(2). Then (19), implies that

¢(Z)=1+G{ #(2) d V(g)}yz(c sz) 5

ro| =
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(1-r)[1-0,(2)]é(z)=(1-2r)o[1-0,(2) |o(2) + o [1+ 0, (2) |75, (2), 1)
BEACIE A
where ¢(z)=c 702 7 B Solving (21) to get the value of ¢(z) as
gol-z oo olre(E) ()
#z)=1, 0 ) (-1)[1-0,(2)] (1-1)[1-0,()] @2)
Also equation (20) leads to
o (1 +o, (z)) no, (2)
-7 )d(2)=(1-2y,)p(2)+ — L :
e [ e @
From (22) and (23), we observe that
{7’_1_L} (2)+ G(1+wy(z)) _ 7, (2)
fn 1) e ()] ()0, ()
(24)

c (1 to, (z)) 1o, (z)

(1-n)|1-0,(2)] (-n)(1-e, ()

On contrary, we assume the mapping ®, (2) does not a self mapping. Therefore, there exists z, e E:

=1. Substitute z = z, in (24) to have

®, (z)‘ <1 for |z| < |20| and

a)yl (ZO)

and

or we note that

noo 7 4 "
{1_}/1 1_}/}Rego(zo)+0+2(1 >0+

By using Theorem 5.4, we obtain

71 /4 /4 1) 7 14 Y _ N
— 102+ >— - o+ = .
{1—% 1—7} (=0) 2(1-7) 2{1—n 1—7} 2(1-y) 2(1-x)

which 1s a contradiction. Therefore, {RG (O,y) ,J1<o< 1} 1s a filtration.
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Corollary 5.7 For o =1 and y <y, <1,R;(0,7) = R, (0,7,).
For detail, see [21].
6. Interpolation of 7, (n)

We work out certain interpolation results regarding some estimate of 7, (n) given by (3).

Theorem 6.1 If the set {RU (0,7),0€ [—1,1]} such that R, (0,y) = G is a filtration, then

20—y
3—6)(4)/—6)

sup )‘ﬁ(n)‘ﬁmax(( ,|1—n|J,ne(C

Fer (0

where F(z)= (ﬁ} of (2).

Proof. In the above Theorem 5.6, we have seen that j}RG (0,7),0 € [—1,1]} is a filtration of G. We take
o =0 and apply the Theorem 4.3 to reach the desired conclusion.
For « =0, 0 =1 and y € R, we get the following special case as seen in [21].

Corollary 6.2 If the set {7?1 (O,y)} =G so that R, (0,y) = S; is a filtration, then
2
%] zf (z) and n € C. In the context of (3), the sup is obtained for y =0 and y =1.
z
The above estimate is sharp when y €(0,1) and for f,, f, € R, (0,7) such that
- _ y\l+z vy
%, (1)) =(1-5 2+

1-z

sup )‘ff (n)‘ < max[

Y 5|1 -n
Fer (0 14

6-4

where F(z):[

and
1 2
%, (1)(e)=[1-L ]2 0

1-22

are obtained from (5) and fulfill the Briot Bouquet equation. Hence, ‘.’Ffl (n)‘s|1—n , neC and

2-y
‘f’é (T])‘S 6—47/.

7. On Filtrations

For f e .A,f(z) #0,zeE\ {0}, we consider

o (N(E)= o (1=0) 775 +a[f(22)]a’

and
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We show that S; c Ry, _, for any a <2.
2

Theorem 7.1  For F(z)=(ﬁ} zf'(z)eSl*, Re[[ﬁ] f'(z)}>%, and Sl*cRa(a,l—a),

2 2

1
o€ [—1,1]. The sharp result holds for the mapping 2(1 - z”) o,
Proof. Assume that

and

For 7'=¢(2), and S=Z¢,(2), ‘P(T',S)=G—(r+1):‘P(ip,u)=d—(p2‘u+1), if peR and
1) 2 - _ u : _| = o .
<lo-—= 1), then Re| Y (ip,u)|= Re|1- <0. S F(z)= S,
'u<(o- 2)(;) +) en e[ (Lp ,u)] e[ (p2+1)UJ< ince (z) [f(z)] zf (z)e i S0
we have Re[‘l’ ((p,zq)' )(2)} > 0. Therefore, Re¢ (2) >% or we can write Re [%J f (Z) > é
z

Theorem 7.2 For a <a, <1, we have R, (a,l —a) c R, (al,l —al).

Proof. We take F(z)=£%] zf (z)eR, (a,1-a) for o e[-1,1], zeE. Then ReJ],_, (f)(z)>%
z

shows that there exists a mapping y, (z) in such a manner that from (7), we write

)

()= -a(-0)
L N TS M oo

Then, from above functional equation, we see that

v, (2){(1—05)[6 Z}’:((ZZ)) —z%ln[f’ (z)ﬂmzv ()] f (z)]—(l—a)(l—o)

(25)

237, (F)(z)=¢,(2)=2° [}‘(z)]fcr f(2) —LG% —z%ln [f' (z)ﬂ, (26)
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By using (26) in (25), we observe that

or

- : (27)

=q,2° [f(z)]_o f(z)-o-a,(1-0)+(1 —al)(a%—zéln[f (2)]}

and

1 zf'(z) zf”(z) (1—051)(1_0')‘l/a1 (Z) 0'+061(1—O')
4 (z)——(" &) 1) } | | 9

o
Equating (27) and (28), we observe that

(29)

Obviously y (0) 0 and on contrary we suppose that the mapping vy, ( ) is not a self-mapping.
Then for z, e E: ‘l// ‘<1 v |z| |zo| while ‘1// (z) =

1. Substituting z = zo n (29) to have

1 1 . —zin . +sz() ~ e0+a(1 0')+ e(l a)(l-o)y,(2)
{a al}R[ dzl [f( )] f(z)} R a[l—a)a(z)] R 1-vy,(2)

1
>

20,
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Now applying Theorem 5.4, we see that

| A L X R

a o, dz f(2) a [1 -y, (z)] 1-y,(2) 2a,

Hence, we find that

#f (z ,
zi{li}R[" =il )5,
of (2) _af (2)
() f(2)

tion to our supposition. Therefore, the proof of our desired result is concluded.

. This is an obvious contradic-

This leads to the condition: Re ¢(z) <% for p(z) =0

. 1 . )
The following theorems turns out that the set R?,  with — <a <2, constitutes some filtrations for

a,l-a

certain generators along with sharp estimates over the quantity ‘.7-} (n )‘

Theorem 7.3 Let F(z) = (LJ zf (z) eR, (a,l - a), %s a<2.Then R, (a,l —a) c G. Furthermore,

/(2)

z )] zf (z) e R, (a,1-a) describes a semi-group {3,,s 20} = A such that

fOr%Sa <1, each F(z)=[W

1-2a, 1
3, (z)‘ <e 2 |z|,a = 1,5 andz € E.

Also the set {RG (a,1- a)} is a filtration of G such that

sup ‘.7-} (n )‘ < max
FeR (o 1-ax)

{a(2—20)—1+20 -

(3-0)(3c +2) | }
where e C and F(z)= [L)JG of (2).

Proof. Assume that F(z) = (mJ zf (z) ZG: Re {z" [f(z)}_a f (z)} >0 and take a)(z) as given by (7)
z

with 7 =0 in such a way that

p(z)+1’
and
f ] =1 ol = @]
Moreover

f'(z) f(z) _G_1+a)(z)_1—a)(z)'
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For a fixed ze€E, the mapping a)(z)eE is equivalent to Rez® [f(z)}fc f (z)>0. In the pro-

spective of our assumption, there is a point z, € E so that Rez° [f(z)]_a f (z)<0:|z|<|20| while

Re{f(zo )] f (Zo) =0 and hence, ‘a)(zo )‘ =1. Therefore, by using Lemma 2.5, we find k >1, such that
o0

Zoa" (Zo) = ta)(zo). A straightforward calculation leads to
~o v 2of (20)  2of (20) z | .
e E)=0 a){a o) 1) ) ey T )

o(z)+1 Zoa’,(ZO)JrZOw,(ZO)_G ~a
[1_(0(20) a)(zo)+1 J(l ) (30)

oz +1_( to(z,) | to(z)

a)(zo)+1 1—a)(20) _6](1_05).

Using o(z,)=a+ib, a,beR:a’?+b?=1, we have

1 l1-a 1
Re = 3 2 =,
{l—a)(zo)} b*+a*-2a+1 2

or we note that

Re a)(zo) :Re(l—a+ib)(a+ib) —az—b2+a: 1

1-o(z) b*+a’® —2a+1 2(1-a) 2

We also find that

Pe 1 =Re{ 21-‘1-20,—7,[) }:l’
1+o(z) b>+a”+2a+1) 2
and finally we see that

po_@(20) :Re((1+a)—ib)(a+ib) 1
1+o(z) 1+ 2a+b% +a? 2’
0

Using (30), we simplified that

Re3S, , (2,)=Re

a1+a)(2‘0)_ ta)(ZO) _G+M -a
1-0(z) (1+co(zo) 1—‘0(20)](1 )]

= (1 —a)o.

Since F(z)= {%J zf (2)eR, (a,1-a) and Re37, , (f)(zy)=(1-a)o, so we have a < % Thus
> ,
using (10), we see that R (a,l - a) c G, whenever a > % For the choice of @ =1, we find that

S (M)(2)=27[1(2)] " £ (2).0€[-1.1];
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and for the choice of a = %, we see that

=3l =T -2 )|

In both of the above situations, we see that feR, (a,l—a), which proves that the semi-
group {Ss :SZO}CA, and it satisfies the problem given in (4). The function or mapping

F(z)= [%T of (2) e A given by

s—>0"

e RCC A

with 3, (z) = exp(-as)z, a= 1;& e C, so that
S

{hm w} :z-{hm L(a)} c e = (F(e)) 520,

S

s—0" s—07"

is clearly a generator (infinitesimal) for a single parameter set of semi-groups. Thus for each z e E
, the problem in (4) is obviously take or assume a solution (unique) 6 =6, (2), $>0 in such a way that

1-2a
~

3, (z)| <eZa' 2|, & :1,% and z € E. So we assume %<a <1, and take

p(z)=2° [f(z)]fa f(2) —(1 ;ja JG ,

which can be written as

zp () s zf (2) . zf (z)
EiEat

This leads to

= ap(z)+a 2= (=) g
) (205} (0532)*;(52;"‘} 5
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From these simplifications and for the assumption § =1-a, we note that

2a l (Z)Jrl(é‘—ay.
s P51 ag

In view of Lemma 2.1, we observe the solution go(z):qb(z) is  holomorphic with

Re¢ (z) = Rez® [f(z)]_a f (z) > % >0, z e E. Therefore, in the above situation, the operator 3° (f)(z)

a,l-a

generates a single parameter semi-group and thus the set {RU (a,1- a)} is equivalent to G. Also, if we
take a areal, fe A, o e[-1,1] and z € E such that

Then SUPFero ‘}"f (n )‘ < max[

a(2-20)-1+20
(3-0)(3c +2)

> 0.

a(2—26)—1+26
(3-0)(3a +2)

,|1—17| for n e C and F(Z):[ i } zf (z), over

the set R, (a,l —a).
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