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Abstract
In this paper, using the Error functions and subordinate to Horadam polynomials, we introduce two 
inclusive subfamilies AEH( , , , , , )� � � � � �  and BEH( , , , , , )� � � � � �  of complex order. For functions in 
these subfamilies, we derive the estimations of the initial coefficients | |2Q  and | |3Q , as well as the 
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1. Introduction and preliminaries

Based on recurrence relations, the Horadam polynomials are a family of polynomials that generalizes 
existing families, including the Fibonacci, Chebyshev, Pell, Pell-Lucas, and Lucas polynomials. In 
1978, Australian mathematician Murray S. Klamkin Horadam introduced these polynomials, which 
bear his name.

Numerous intriguing characteristics are displayed by Horadam polynomials, which are related to 
number theory, algebraic geometry, and combinatorics, among other branches of mathematics.
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The following recurrence relation defined by Horadam [15, 16]:

h h h h h ll l l� � � � � �2 1 0 1 0= , = , = , , , , , = 0.� � � � � � � � R N N

For l� �� � 1,2 , Horadam polynomials h yl ( ), is defined by:

h y yh y h yl l l( ) = ( ) ( ),1 2� �� �� (1)

with

h y h y y h y y1 2 3
2( ) = ( ) = ( ) = , , , , ,� � �� �� � � � �, and � � (2)

where the generating function of the Horadam polynomials h yl ( ) is given as:
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Remark 1.1 The Horadam polynomials h yl ( ) yield a variety of polynomials for particular values of α ,  
ε , γ  and δ  (see [15, 16]). For instance:

	 1.	 At � � � �= = = =1, we get the Fibonacci polynomials Fp yl ( );
	 2.	 At α = 2 and � � �= = =1, we get the Lucas polynomials Lp yl ( );
	 3.	 At � �= =1 , γ = 2  and � = 1� , we get the first kind of Chebyshev polynomials Cp yl

1( );
	 4.	 At α =1, � �= = 2 and � = 1� , we get the second kind of Chebyshev polynomials Cp yl

2( ) ;
	 5.	 At � �= =1 and � �= = 2, we get the Pell polynomials Pp yl ( );
	 6.	 At α =  � �= = 2 and δ =1, we get the first kind of Pell-Lucas polynomials PLp yl ( ). 

In complex analysis, error functions extend the ideas of quantifying deviations and measuring 
differences into the world of complex numbers. Statistics, probability science, modeling complicated 
variable physical processes, solving differential equations, and comprehending the behavior of ana-
lytic and non-analytic functions all depend on these functions ( see [18, 19]).

The complex error function, commonly referred to as the Faddeeva function, is one of the most well-
known instances. It generalizes the Gaussian error function to complex inputs. Because it sheds light 
on oscillatory and exponential behaviors in the complex plane, this function is essential to statistical 
physics, quantum mechanics, and wave propagation.

In systems affected by complex dynamics, error functions are especially helpful for estimating 
growth and decay rates, evaluating singularities, and modeling complex scenarios.

Elbert et al. [9] examined the characteristics of complementary error functions, whereas Coman [7] 
and Alzer [1] examined different characteristics and inequalities of error functions.

The definition of the error function erf , is (see [5], p. 297):

erf e d
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Additionally, the definition of the imaginary error function erfi , is

erfi e d
l ll
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The following represents the generalized error function of (4) (see [5], p. 297):
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Also, the generalized imaginary error function of (5) given by:

erfi e d
l ll

l l
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Let Π  represent the family of univalent and analytic functions F  in the unit disk � = { : <1}� ��  
normalized by F F'(0) = (0) 1 = 0− . Therefore, each function F ��  has the following form (see [8]):

F Q
l

l
l( ) = , ( ).

=2
� � � �� ��

�

� (8)

Therefore, the inverse of every function F ��  is F −1 , which is defined by 

F F� �1( ( )) = ( )� � � �

and

F F w w w F F( ( )) = ( < ( ); ( ) 1
4
),1

0 0
� �� �

where

G w F w w Q w Q Q w Q Q Q Q w( ) ( ) = (2 ) (5 5 ) .1
2

2
2
2

3
3

2
3

2 3 4
4� � � � � � � ��
 (9)

Now, the subordination of analytic functions F1 and F2  (symbolizes by F F1 2( ) ( )ς ς  or F F1 2  ) if 
for all � ��  there exists a function Θ  with Θ(0) = 0  and | ( )|<1� � ; such that:

F F1 2( ) = ( ( )).� ��

Also, if F2  is univalent in ∆, then (see [21])

F F F F F F1 2 1 2 1 2(0) = (0) ( ) ( ) ( ) ( ).and � � � �� � 

A function F , given by (8), belongs to the family BU  of bi-univalent functions in ∆  if both F  and 
F −1 are univalent in ∆ . For additional information about the family Ψ , see [17, 23, 25, 27].

The functions erf� �� � and erfi� �� �  are obviously not members of the family Π . Thus, it seems sense 
to take into account the normalizations for these functions that Al-Hawary et al. suggested in [11] 
(see also, [13])
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The convolution of two functions F Q
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We define the function below using the convolution 

EF F E
l l

Ql l

l
l
l

� �� � � �
�

� �� � � � � �
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Note that for µ = 2  in (10), the normalization for Ramachandran et al. [24] is attained. The normal-
ization for µ = 2  in (11) is achieved for Mohammed et al.  [22].

Bi-univalent functions associated with specific functions have been the subject of extensive inves-
tigation (see [2, 4, 12-14] ), and several well-known families include the Jacobi, Laguerre, Legendre, 
Hermite, Chebyshev and many other functions ( see [3, 26, 28, 29] ) .

Ezrohi [10] introduced the family 

( ) = : ( ) > , ( ;0 <1) .� � � � �F F Re F'� � � � �� �� �and

Also, Chen [6] introduced the family 

ST ( ) = : ( ) > , ( ;0 <1) .�
�
�

� � �F F Re F
�

�
�
�

�
�
�

� �
�
�
�

��

�
�
�

��
� �and

Motivated by the previous two families, in this work, we introduced the comprehensive subfamilies 
AEH( , , , , , )� � � � � �  and BEH( , , , , , )� � � � � �  of complex order using error functions and subordinate to 
Horadam polynomials. The upper bounds of the coefficients | |,2Q  | |3Q  and the functional | |3 2

2Q Q� �  
are estimated for these subfamilies.

2. Coefficient bounds for the inclusive subfamilies AEH( , , , , , )� � � � � �  and BEH( , , , , , )� � � � � �

The definitions of the inclusive subfamilies AEH( , , , , , )� � � � � �  and BEH( , , , , , )� � � � � �  of complex 
order using error functions and Horadam polynomials are given first in this section.

Definition 2.1: Let η > 0, � �, � �� �i 0, � ,w�  and the function GH y( , )ς  is given by (3). A func-
tion F BU∈  given by (8) is said to be in the subfamily AEH( , , , , , )� � � � � �  if the subsequent subordi-
nations are met: 

EF GH yi ' i
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 ( , ) 1 (12)
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Definition 2.2  Let η > 0, � �, � �� �i 0, � ,w�  and the function GH y( , )ς  is given by (3). A func-
tion F BU∈  given by (8) is said to be in the subfamily BEH( , , , , , )� � � � � �  if the subsequent subordi-
nations are met: 
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GH y

i i
�

� �
�

�
� �

� ��

�
�
�

�

�
�
�

� �

�

 ( , ) 1 (14)

and

EG w
w

GH y w
i i
�

� �

�
� ��

�
�
�

�

�
�
�

� �

�

 ( , ) 1 . (15)



Al-Hawary T et al., Results in Nonlinear Anal. 8 (2025), 271–283.� 275

Lemma 2.3 ([30]) Let � �1 2, �  and � �1 2, � . If τ1 <   and τ2 < ,  then

( ) ( )
2 ,
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Lemma 2.4 ([20]) If  C Q Q( ) =1 1 2
2� � �� � � � � , � ��, then there exist some V L,  with V ≤1, L ≤1, 

such that
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Theorem 2.5 Let F BU∈  given by (8). If F AEH� ( , , , , , ).� � � � � � Then
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Proof. Let F AEH� ( , , , , , ).� � � � � �  So, from (12) and (13), we can write
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where the analytic functions T  and V  are of the form:

T ( ) = ,1 2
2

3
3� � � � � � �� � �

and

V w t w t w t w( ) = ,1 2
2

3
3+ + +

such that T V(0) = (0) = 0  and T V( ) <1, ( ) <1ς ς  for � ,w�� .
Thus we have 

EF h y h y h yi ' i

�

� �

� � � � � � �� �� ��
��

�
��

� � �� � � �
�

=1 ( ) ( ) ( ) ,2 1 2 2 3 1
2 2

 �.. (18)

and

EG w h y t w h y t h y t w wi ' i

�

� �

� �� ��
��

�
��

� � �� � � �
�

=1 ( ) ( ) ( ) ,2 1 2 2 3 1
2 2

 �,, (19)

such that

�l lt l� � �1 1, .and  (20)

From (18) and (19), we have
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Add the equations (22) and (24), then substituting the value of �1
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Using the triangle inequality for the equations (21) and (27), and using (20), we obtain respectively:
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Also, if we subtract (24) from (22), we have 
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In view of (25), the equation (28) becomes
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Using (25) and (26), the equation (29) becomes
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Using the triangle inequality and (20) for equation (30), we obtain
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Using the triangle inequality and (20) for (31), we obtain
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From Lemma 2.4, we get 2 = (4 )2 1
2

1
2� � �� �a   and 2 = (4 ),2 1
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Using (2) for equation (32), we have
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the inequality (32) as: 
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 Hence, the function M  is a decreasing on [0,2]; 

therefore,
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Also, M j' ( ) 0≥  iff 1
4 2 1
3 ( 1)2
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. So, M  is an increasing function over [0,2], so
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and the estimation (17) has been confirmed to be accurate. 

Theorem 2.6 Let F BU∈  given by (8). If F BEH� ( , , , , , ).� � � � � � Then
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Thus we have 
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From the equations (33) and (34), we get
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We obtain the results of Theorem 2.6 by using the final four equations and the same method used 
to prove Theorem 2.5.

3. Corollaries and Remark

For the subfamilies AEH( , , , , , )� � � � � �  and BEH( , , , , , )� � � � � � , numerous corollaries can be obtained 
for specific values of � �,  in Theorems 2.5 and 2.6, for example.
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and
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Corollary 3.3 If F AEH� ( , , , ,1,0),� � � �  then
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Remark 3.4 For the subfamilies AEH( , , , , , )� � � � � �  and BEH( , , , , , )� � � � � � , we can derive numerous 
corollaries for specific values of � � � � � �, , , , ,  in Theorems 2.5 and 2.6. In particular, in view of Remark 
1.1, we can derive several results related to Lucas polynomials, Fibonacci polynomials, Pell polynomi-
als and Pell-Lucas polynomials, Chebyshev polynomials of the first kind and second kind. 

4. Conclusions

In this paper, we introduced the inclusive subfamilies AEH( , , , , , )� � � � � �  and BEH  ( , , , , , )� � � � � �  of 
complex order using the Error functions subordinate to Horadam polynomials. For functions in these 
subfamilies, we derive the estimations of the initial coefficients | |2Q  and | |3Q , and the functional 
| |3 2

2Q Q� � .
The results of this study provide opportunities for more research, especially because of the original 

characterizations and evidence offered. These findings open the door for further study of more special 
functions within the analytic and bi-univalent function subfamilies of complex order, in addition to 
enhancing the theory of these subfamilies. The interaction of the introduced subfamilies, Horadam 
polynomials, and the error function may lead to new avenues for the investigation of complex func-
tions and their uses.
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