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Abstract
This work explores an application of novel fractal patterns, specifically Julia and Mandelbrot sets, 
generated by a modified class of complex function in which the traditional constant term is replaced 
with a logarithmic function. Utilizing a viscosity approximation-type iterative method, we develop 
escape criteria that enhance existing algorithms, thereby enabling the precise visualization of intri-
cate fractal structures as Julia and Mandelbrot sets. Numerical experiments in MATLAB reveal that 
varying the input parameters induces significant dynamic transformations in the fractals’ morphol-
ogy. We believe that the insights gained from this study will inspire and motivate researchers and 
enthusiasts with a deep interest in fractal geometry.
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1. Introduction

Fractals are infinitely complex mathematical patterns that exhibit self-similarity, meaning their 
intricate shapes repeat at different scales. These mesmerizing structures appear throughout nature, 
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from the branching patterns of trees and river networks to the delicate formations of snowflakes and 
the spiraling arrangements of fern leaves. Mathematically, fractals are generated through iterative 
methods, where a simple equation or set of rules is applied repeatedly, with each iteration build-
ing upon the last to produce increasingly detailed and complex patterns. For more details, refer to  
[13, 14, 16]. This process of repeated refinement transforms basic mathematical operations into stun-
ningly elaborate forms that mirror the organic beauty found in the natural world.

This comprehensive approach deepens our understanding of the fundamental principles that gov-
ern natural phenomena through fractal mathematics. Fractals, especially the Julia and Mandelbrot 
sets, have fascinated mathematicians for nearly a century, beginning with Gaston Julia’s early 
20th-century work on Julia sets [7]. These intricate structures are generated using fixed-point iter-
ative methods like Mann and Picard iteration, along with other advanced techniques, to explore 
their complex dynamics (see [3, 5, 10, 17–19]). These iterative approaches have proven particularly 
valuable in analyzing the behavior of polynomials, complex trigonometric functions, and transcen-
dental functions, demonstrating how the choice of the iteration method can dramatically influence a 
fractal’s visual characteristics—affecting its shape, coloration, and structural complexity even when 
applied to identical base functions (see [20, 21]). Beyond classical Julia sets, these iterative frame-
works serve as the mathematical foundation for creating various other fractal types, including intri-
cate biomorphs, iterated function system fractals, inversion fractals, and root-finding fractals (see [6, 
8]), showcasing the remarkable versatility of iterative methods in fractal geometry.

The study of iterative techniques in fractal generation and analysis has seen significant theoreti-
cal advancements through key developments in viscosity approximation methods. In 2000, Moudafi’s 
seminal work [12] established crucial convergence properties of the viscosity method for semi-non-
expansive mappings, providing a rigorous mathematical framework that has profoundly influ-
enced iterative approaches to fractal construction. These theoretical breakthroughs have enabled 
deeper analysis of fractal structures and their convergence behavior. Building upon this foundation, 
Adhikari et al. [1], Babar et al. [4], Nandal et al. [15] and Kumari et al. [9] recently extended these 
concepts by developing generalized viscosity approximation-type iterative methods within Hilbert 
spaces, marking an important expansion of both the theoretical underpinnings and practical imple-
mentations of iterative techniques. These methodological innovations have substantially enriched 
fractal mathematics, offering more sophisticated tools for investigating the complex dynamics of 
fractal generation while simultaneously broadening their potential applications across mathematical 
and computational domains. The progressive refinement of these iterative approaches continues to 
enhance our capacity to analyze and generate increasingly complex fractal structures with greater 
precision and mathematical rigor.

Recent studies by Tanveer et al. [20] and Iqbal et al. [2] have advanced fractal generation by 
using generalized viscosity approximation methods to produce Mandelbrot and Julia sets, improving 
the visualization of their complex dynamics. Building on this, our research extends these techniques 
to derive escape criteria for the complex function W (z) = Ψzn + log αp, where n ≥ 2, Ψ ∈ C, α ∈ C\{0} 
and p ∈ R, p ≥ 1.

This paper is systematically organized into five sections to present a comprehensive study of 
fractal generation using viscosity approximation methods. Section 2 establishes the fundamental 
mathematical framework by introducing essential definitions, concepts, and preliminary results nec-
essary for our analysis. In Section 3, we develop the theoretical core of our work, presenting key 
theorems that establish a generalized escape criterion a critical component for constructing both 
Julia and Mandelbrot sets through our viscosity approximation-type iterative approach. The prac-
tical implementation is presented in Section 4, where we detail the computational algorithms and 
showcase corresponding visualizations of Julia and Mandelbrot sets for varying parameters, all gen-
erated using MATLAB R2024a (version 24.1.0.2537033, 64-bit) on a standard HP laptop featuring an 
Intel(R) Core(TM) i7-14700HX (2.10 GHz) processor and 32 GB of RAM. Section 5 presents numeri-
cal results that illustrate a clear variation in the shapes and sizes of the fractal sets generated by the 
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proposed iterative method. Finally, Section 6 concludes the study by summarizing the main findings 
and contributions.

2. Preliminaries

Definition 2.1. (Julia set [7]). For a complex function U : C → C the filled Julia set FU is defined as:

	 FU = {z ∈ C : {|U j(z)|}∞
p=0 is bounded}.

where Qj denotes the jth iterate of U. The boundary of FU is called the Julia set.

Definition 2.2. (Mandelbrot set [7]). For a complex function U : C → C, the Mandelbrot set M is 
defined as:

	 M = {α ∈ C : Fα is connected}, 

where Fα denotes the filled Julia set associated with Equivalently,

	 M = {α ∈ C : |Fα
j(0) ↛ ∞ as n → ∞}.

Definition 2.3. ([12]). A sequence {zj} ⊆ C with initial point z0 ∈ C is referred to as the viscosity 
approximation method if

	 zj+1 = ϑjh(zj) + (1 − ϑj)U(zj), j ∈ N ∪ {0},	 (2.1)

where ϑj ∈ (0, 1), h, U : C → C and h is a contraction mapping.

Mainge [11] proposed the following viscosity approximation method which is a special variant of 
(2.1): starting with an arbitrary initial point z0 ∈ C, zj generated by

	 zj+1 = ϑjh(zj) + (1 − ϑj)Uς (zj), j ∈ N ∪ {0},	 (2.2)

where Uς = ςjI+(1−ςj)U, with quasi-nonexpansive mapping U ([15]), and ϑj, ςj ∈ (0, 1). For simplicity, 
throughout the manuscript we consider ϑj = ϑ and ςj = ς, where ϑ, ς ∈ (0, 1). Consider the complex 
function U : C → C defined by:

	 U(z) = Ψzn + log αp,	 (2.3)

where n ≥ 2, Ψ ∈ C, α ∈ C\{0} and p ∈ R, p ≥ 1. Additionally, assume h(z) = az + b is a contraction 
mapping (a, b ∈ C, |a| < 1).

Throughout the article, we assume log( )pαψ
α

= , giving the relation log(αp) = ψα.

3. Escape criteria for Viscosity Mandelbrot and Julia sets

In the complex space, we study the viscosity approximation-type orbit zj given by Mainge [11]:

	 1 ( ) (1 ) ,
(1 ) ( ),

j j j

j j j

z h z y
y z z

ϑ ϑ

ς ς
+ = + −


= + − U

	 (3.1)

where z0 is starting point, U is complex valued function, h is a contraction mapping and ϑ, ς ∈ (0, 1) 
are parameters.

Definition 3.1. A mapping h : C → C is called a Banach contraction mapping if there exists τ ∈ (0, 1) 
such that

	 |h(z1) − h(z2)| ≤ τ |z1 − z2|, for all z1, z2 ∈ C.
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Definition 3.2. (Viscosity Julia set [7]). For the operator U in (2.1), the viscosity filled Julia set F′
U 

consists of all z ∈ C where the orbit {zj} from (2.2) remains bounded. The boundary of the filled Julia 
set, F′

U, is referred to as the viscosity Julia set.

Definition 3.3. (Viscosity Mandelbrot set [7]). For the complex operator U in (2.2), the viscosity 
Mandelbrot set M′ is

	 M′ = {α ∈ C : |zj| ↛ ∞ as j → ∞},

where z0 = 0 and zj for j > 0 is defined by (3.1) with U as the complex operator.

In the literature, several methods have been employed to construct and analyze fractals, includ-
ing the escape time algorithm, potential function, iterated function systems, and distance estimator 
algorithms. Among these, the escape time algorithm is one of the most significant techniques for 
fractal generation. The escape criterion serves as a condition to determine whether the orbit of an 
initial point diverges to infinity. In this work, we establish a general escape criterion applicable to 
the generation of viscosity Julia and Mandelbrot sets.

Theorem 3.1. Assume that |z0| ≥ max{|α|, |b|} > 

1
1(2 (1 )(1 )

(1 )
na ϑ ς ψ

ς ϑ

− + + − −
  − Ψ 

, where n ≥ 2,  

Ψ ∈ C, α ∈ C\{0} and p ∈ R, p ≥ 1, and h(z) = az + b with a, b ∈ C and |a| < 1. Let the sequence {zj} be 
defined as

	 1 ( ) (1 ) ;
(1 ) ( ).

j j j

j j j

Z h z y
y z z

ϑ ϑ

ς ς
+ = + −


= + − U

	 (3.2)

Then |zj| → ∞ as j → ∞.

Proof. From (3.2), we have

	 |yj| = |ςzj + (1 − ς)U(zj)|, j ≥ 0.

For j = 0, we have

	 |y0| = |(1 − ς)z0 + ς(Ψzn
0 + log αp)|

	 = |(1 − ς)z0 + ς(Ψzn
0 + ψα)|

	 ≥ |ς(Ψzn
0 + ψα)| − |(1 − ς)z0|

	 ≥ ς|Ψzn
0| − ς|ψα| − (1 − ς)|z0|

	 ≥ ς|Ψ||zn
0| − ς|ψ||α| − |z0| + ς|z0|

	 ≥ ς|Ψ||zn
0| − ς|ψ||α| − |z0|.

Our assumption |z0| ≥ max{|α|, |b|} yields that −|α| ≥ −|z0|, we obtain

	 |y0| ≥ ς|Ψ||z0
n| − ς|ψ||z0| − |z0|

	 ≥ |z0| ς|Ψ||z0
n−1| − (1 + ς|ψ|) 

thus,

	 |y0| ≥ |z0| ς|Ψ||z0
n−1| − (1 + ς|ψ|) .	 (3.3)

From (3.2), consider

	 |z1| = |ϑh(z0) + (1 − ϑ)y0|
	 = |ϑ(az0 + b) + (1 − ϑ)y0|
	 ≥ (1 − ϑ)|y0| − ϑ|az0 + b|
	 ≥ (1 − ϑ)|y0| − ϑ|a||z0| − ϑ|b|.



Ahmad I., et al. Results in Nonlinear Anal. 8 (2025), 118–135 	 122

Our assumption |z0| ≥ max{|α|, |b|} yields that −|b| ≥ −|z0|, and using (3.3), we have

	 |z1| ≥ (1 − ϑ) |z0|(ς|Ψ||z0
n−1| − (1 + ς|ψ|)) − ϑ|a||z0| − ϑ|z0|

	 ≥ |z0|(ς(1 − ϑ)|Ψ||z0
n−1| − (1 − ϑ)(1 + ς|ψ|)) − ϑ(1 + |a|)|z0|,    ∵ ϑ ∈ (0, 1)

	 ≥ |z0|(ς(1 − ϑ)|Ψ||z0
n−1| − (1 − ϑ)(1 + ς|ψ|)) − (1 + |a|)|z0|

	 ≥ |z0| (ς(1 − ϑ)|Ψ||z0
n−1| − (1 − ϑ)(1 + ς|ψ|) − (1 + |a|) .	 (3.4)

Our assumption |z0| > 

1
1(2 (1 )(1 )

(1 )
na ϑ ς ψ

ς ϑ

− + + − −
  − Ψ 

 gives

	 ς(1 − ϑ)|Ψ||z0
n−1| − (1 − ϑ)(1 + ς|ψ|) − (1 + |a|) > 1.	 (3.5)

Thus, there exists Ω > 0 such that

	 ς(1 − ϑ)|Ψ||z0
n−1| − (1 − ϑ)(1 + ς|ψ|) − (1 + |a|) > 1 + Ω > 1.

From (3.4), we obtain

	 |z1| > (1 + Ω)|z0|.

In particular |z1| > |z0|. Continuing this procedure, we obtain

	 |zj| > (1 + Ω)j|z0|.

Hence, |zj| → ∞, as j → ∞.

In the proof of Theorem 3.1, We just made use of the fact that |z0| ≥ max{|α|, |b|} and 
1

1

0
(2 (1 )(1 )

.
(1 )

na
z

ϑ ς ψ
ς ϑ ψ

− + + − −
≥   − 

 So, we can refine it and get the following result.

Corollary 3.1. Assume 

1
1

0
(2 (1 )(1

max , , ,
(1 )

na
z a b

ϑ ς ψ
ς ϑ

−
 

 + + − − 
≥    − Ψ  

 

 where α, b, Ψ, α ∈ C (α ≠ 0, 

|a| < 1), p ≥ 1, then lim .jj
z

→∞
= ∞

Corollary 3.2. Let 

1
1(2 (1 )(1

max , , ,
(1 )

n

kz b
α ϑ ς ψ

α
ς ϑ

−
 

 + + − − 
≥    − Ψ  

 

 for some j ≥ 0, α, b, Ψ, α ∈ C  

(α ≠ 0, |a| < 1), p ≥ 1, and ϑ, ς ∈ (0, 1). Then there exists Ω > 0 such that |zj+k| > (1 + Ω)j|zk|, and we 

have lim .jj
z

→∞
= ∞

4. Graphical Examples

By leveraging Corollaries 3.1 and 3.2, we generate viscosity-filled Julia and Mandelbrot sets for the 
function U(z) = Ψzn + log αp, where n ≥ 2, a, b, Ψ, α ∈ C (α ≠ 0, |α| < 1), p ≥ 1, using the proposed vis-
cosity approximation iterative method. Based on these corollaries, if for some j ≥ 0, the point zj lies 
outside the circle of radius

	

1
1(2 (1 )(1

max , , ,
(1 )

na
R b

ϑ ς ψ
α

ς ϑ

−
 

 + + − − 
≥    − Ψ  

 
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then the orbit of |z0| escapes to infinity, and consequently, z0 does not belong to the viscosity-filled 
Julia set. Conversely, if zj remains within the circle of radius R, the point z0 stays in a bounded region 
and thus belongs to the viscosity-filled Julia set. Algorithm 1 outlines the pseudocode for the escape-
time algorithm used to generate the viscosity-filled Julia set. In this algorithm, the viscosity-filled 
Julia set are generated within a specified region A ⊂ C of the complex plane, utilizing a chosen color 
map. Algorithm 2 summarizes the escape-time algorithm for the function U(z) and its iterations. 
Here, each point α in the region A is treated as the constant in U(z). The function U(z) is iterated 
using the selected iterative method, and it is checked whether the point computed in the current 
iteration exceeds the escape threshold R. Upon completing the iteration process, a color from the 
selected color map is assigned to α. These algorithms provide a systematic approach to visualizing 
the viscosity-filled Julia and Mandelbrot sets for the given function, offering insights into the behav-
ior of the iterative process within the complex plane. We generate and visualize viscosity-filled Julia 
and Mandelbrot sets for various parameter values, exploring the effects of modifying these param-
eters. To avoid infinite loops, a maximum iteration limit K is imposed. Utilizing MATLAB R2024a 
(version 24.1.0.2537033, 64-bit) on a standard HP laptop featuring an Intel(R) Core(TM) i7-14700HX 
(2.10 GHz) processor and 32 GB of RAM, we visualize non-classical Julia and Mandelbrot sets, ana-
lyzing their structural variations under different parameters to efficiently capture fractal patterns 
dynamics while maintaining computational feasibility. Throughout the paper, a maximum number 
of iterations K = 70 is consistently applied.

4.1. Viscosity Julia sets generation for U(z) = Ψzn + log αp.

This section presents viscosity Julia sets generated from the complex function (2.3) under different 
parameter configurations.

In the first example, we generate Julia sets for U(z) = Ψzn + log α.p using Algorithm 1. The result-
ing images are organized into two distinct categories based on the values of p : the first explores inte-
ger values of p, i.e., t = 1, 7, 10 while the second examines noninteger values i.e., t = 1.75, 4.5, 11.5, 
and A = [−1.75, 1.75]2. This reveals distinct structural patterns, emphasizing the critical role of p in 
shaping Julia set morphology. Note that the last column in all the tables displays the image execu-
tion time (in short, IET) in seconds.

Figure 2A–F illustrate the morphology of Julia sets for a spectrum of values of the parameter p, 
with subfigures (A–C) and (D–F) dedicated to integer and non-integer values, respectively. The pro-
found influence of p on the set’s geometry is immediately evident, as even minor variations precipi-
tate significant structural changes. For instance, the fractal in Figure 2A displays central symmetry, 
composed of two primary lobes connected by a narrow neck and encapsulated within a smoothed, 
rounded rectangle. Its pattern is further characterized by six distinct clusters of points, arranged 
symmetrically with three around each lobe. In contrast, Figure 2A,D initially suggest a fourfold sym-
metry, while the sets in panels (b) and (c) exhibit axial symmetry exclusively along the real axis. 
These fractals, such as those in Figure 2B–F, often feature a red central shape with four primary 
extensions, each culminating in intricate, self-similar patterns, all set against a gradient blue back-
ground. A consistent trend emerges upon closer inspection: as the value of p increases, the scale of 
the bulb-like structures within the Julia sets progressively diminishes. The image generation time 
for each iteration is also recorded.

0 5 10 15 20 25

Figure 1: A color map is used in the examples.
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Algorithm 1. Viscosity Julia set generation for U(z) = Ψzn + log αp.

Input: U(z) = Ψzn + log αp, where n ≥ 2, a, b, Ψ ∈ C, α ∈ C\{0}, p ≥ 1,
A ⊂ C-area in which we draw the set; K-maximal number of iterations;
ϑ, ς ∈ (0, 1) and h(z) = az + b, colourmap [0..C-1]-color with C colors.

Output: Julia set for area A
for z0 ∈ A do

log( )pαψ
α

=

1
1(2 (1 )(1 )

max , , ,
(1 )

na
R b

ϑ ς ψ
α

ς ϑ

−
 

  + + − − =    − Ψ  
  

j = 0
while j ≤ K do

	zj+1 = ϑh(zj) + (1 − ϑ)yj,
	 yj = ςzj + (1 − ς)U(zj), where 0 < ϑ, ς < 1 
if |zj+1| ≥ R then break end if
j = j + 1

( 1) jJ C
K

 
= − 
 

colour z0 with colourmap [J]

Table 1: Effect of the parameter p while all other parameters are fixed.

n p Ψ α ϑ ς a b IET
(a) 2 1 1.01i 0.5 0.5 0.6 0.4 1 0.68s
(b) 2 7 1.01i 0.5 0.5 0.6 0.4 1 0.76s
(c) 2 10 1.01i 0.5 0.5 0.6 0.4 1 0.88s
(d) 2 1.75 1.01i 0.5 0.5 0.6 0.4 1 0.94s
(e) 2 4.5 1.01i 0.5 0.5 0.6 0.4 1 1.02s
(f) 2 11.5 1.01i 0.5 0.5 0.6 0.4 1 1.17s

In the second example, we generate Julia sets for U(z) = Ψzn+log αp using Algorithm 1. The result-
ing images are organized into three distinct categories based on the values of Ψ : the first explores 
real value of Ψ, i.e., Ψ = −1.5 the second explores purely imaginary value of Ψ, i.e., Ψ = −2.05i while 
the third examines complex value Ψ i.e., Ψ = −1.05 − 2.05i, and A = [−1.75, 1.75]2. This reveals dis-
tinct structural patterns, emphasizing the critical role of Ψ in shaping Julia set morphology. Each 
figure isolates one varying parameter while holding others constant.

The viscosity Julia sets in Figures 3 & 4A–C demonstrate the influence of individual parameter 
variations Ψ and α on fractal geometry when one parameter is altered while others remain fixed. In 
these figures, subplots (a), (b), and (c) correspond to distinct parameter configurations: purely real, 
purely imaginary, and complex values, respectively. For instance, Figure 3 highlights variations in 
Ψ, while Figures 3 and 4 focus on Ψ or α, in turn. The results reveal that shifts in these parameters 
significantly affect the shape, size, and color gradients of the sets, particularly near the edges of their 
leaf-like structures. Notably, the arms of the fractals exhibit non-uniform morphological changes, 
with asymmetry in local features, yet the overall sets retain axial symmetry.

Figures 5 and 6 A–C illustrate the impact of individual parameter variations on the geometry of 
viscosity Julia sets. By altering either parameter a or b while keeping others fixed, distinct morpho-
logical changes are observed. Each row of subplots—(a) for purely real, (b) for purely imaginary, and 
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(A)

(D)

(B)

(E)

(C)

(F)

p = 1 p = 7 p = 10

p = 1.75 = 4.5 = 11.5p p

Figure 2: Viscosity Julia sets for the values of p generated via Algorithm 1.

Table 2: Effect of the parameter Ψ while all other parameters are fixed.

n p Ψ α ϑ ς a b IET

(i) 2 4 −1.5 0.07 + 0.87i 0.5 0.5 −0.85 − 0.05i −1.05 − 1.5i 1.08s
(ii) 2 4 −2.05i 0.07 + 0.87i 0.5 0.5 −0.85 − 0.05i −1.05 − 1.5i 1.19s
(iii) 2 4 −1.05−2.05i 0.07 + 0.87i 0.5 0.5 −0.85 − 0.05i −1.05 − 1.5i 1.37s

Ψ = –1.5 Ψ = –2.05i Ψ = –1.5 – 2.05i

(A) (B) (C)

Figure 3: Viscosity Julia sets generated for different Ψ values via Algorithm 1.

Table 3: Effect of the parameter α while all other parameters are fixed.

n p Ψ α ϑ ς a b IET
(i) 2 4 1 0.75 0.5 0.5 0.5 + 0.75i 1.05 + 1.5i 1.28s
(ii) 2 4 1 0.75i 0.5 0.5 −0.85 − 0.05i −1.05 − 1.5i 1.41s
(iii) 2 4 1 0.07 + 0.87i 0.5 0.5 −0.85 − 0.05i −1.05 − 1.5i 1.52s

α = 0.175 α = 0.75i α = 0.07 + 0.87i

(A) (B) (C)

Figure 4: Viscosity Julia sets generated for different α values via Algorithm 1.
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(c) for complex values—showcases these effects. The analysis reveals that parameter shifts notably 
alter the shape, size, and color gradients, especially near the delicate edges of the structures. A key 
finding is that although the fractal arms exhibit asymmetric, non-uniform changes at a local level, 
the global structure of the sets preserves axial symmetry.

4.2. Mandelbrot sets generation for U(z) = Ψzn + log αp.

This subsection showcases the viscosity Julia sets corresponding to complex function (2.3) for various 
input values.

In the first example, using Algorithm 2 with fixed parameters n = 2, Ψ = −1.1i, α = 0.5, a = 0.41, 
b = 1, ϑ = 0.5, ς = 0.6 and A = [−1.5, 1.5]2. The images are divided into two groups, corresponding 
to two different cases considered in this example. In the first case, we explore the behavior of the 
Mandelbrot sets using integer values of p, while in the second case, we examine the impact of non-
integer values of p on the structure and dynamics of the sets.

In Figures 7A–C, we observe multiple copies of the same Mandelbrot set, where the number of 
copies corresponds to the value of p. For instance, when p = 1, there is one copy; for, p = 3, three cop-
ies, for p = 6, six copies, for p = 11, eleven copies, and so on. Each pattern exhibits a p-fold symme-
try, creating an intricate rosette-like design. In each image, we observe multiple copies of the same 
Mandelbrot set, with the number of sets corresponding to the value of p. Additionally, each pattern 
exhibits a p-fold symmetry, resembling a rosette-like structure.

Figures 8A–C illustrate more complex behavior for non-integer values of 8 (a, b, c), where the set 
comprises smaller copies of Mandelbrot sets. As p increases, these sets diminish in size but occupy 
more space, eventually leading to overlapping among the smaller copies. With further reduction in 
the decimal value of p, the overlapping intensifies, and the shapes of the smaller copies begin to 

Table 4: Effect of the parameter a while all other parameters are fixed.

n p Ψ α ϑ ς a b IET
(i) 2 4 1.01 0.3 0.5 0.5 0.89 2.4 1.38s
(ii) 2 4 1.01 0.3 0.5 0.5 0.89i 2.4 1.59s
(iii) 2 4 1.01 0.3 0.5 0.5 0.89 + 0.25i 2.4 1.71s

a = 0.9 a = 0.89i a = 0.89 + 0.25i

(A) (B) (C)

Figure 5: Viscosity Julia sets generated for different a values via Algorithm 1.

Table 5: Effect of the parameter b while all other parameters are fixed.

n p Ψ α ϑ ς a b IET
(i) 2 4 1.01 0.3 0.5 0.5 0.75 + 0.25i 1.05 1.43s
(ii) 2 4 1.01 0.3 0.5 0.5 0.75 + 0.25i 1.05i 1.57s
(iii) 2 4 1.01 0.3 0.5 0.5 0.75 + 0.25i 1.05 + 1.5i 1.67s
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b = 1.05 b = 1.05i b = 1.051 + 1.051i

(A) (B) (C)

Figure 6: Viscosity Julia sets generated for different b values via Algorithm 1.

Algorithm 2. Viscosity Mandelbrot set generation for U(z) = Ψzn + log αp.

Input: U(z) = Ψzn + log αp, where n ≥ 2, a, b, Ψ ∈ C, α ∈ C\{0}, p ≥ 1,
A ⊂ C-area in which we draw the set; K-maximal number of iterations;
ϑ, ς ∈ (0, 1) and h(z) = az + b, colourmap [0..C-1]-color with C colors.

Output: Viscosity Mandelbrot set for area A
if α = 0 then discard the point

log( )pαψ
α

=

1
1(2 (1 )(1 )

max , , ,
(1 )

na
R b

ϑ ς ψ
α

ς ϑ

−
 

  + + − − =    − Ψ  
  

j = 0
z0 = 0
while j ≤ K do

zj+1 = ϑh(zj) + (1 − ϑ)yj,
yj = ςzj + (1 − ς)U(zj), where 0 < ϑ, ς < 1 

if |zj+1| ≥ R then break end if j = j + 1

( 1) jJ C
K

 
= − 
 

colour z0 with colourmap [J]

Table 6: Effect of the integer values fo p while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 1 −1.1i 0.7 0.6 0.4 1 0.88s
(b) 2 3 −1.1i 0.7 0.6 0.4 1 0.92s
(c) 2 4 −1.1i 0.7 0.6 0.4 1 1.09s
(d) 2 6 −1.1i 0.7 0.6 0.4 1 1.21s
(e) 2 11 −1.1i 0.7 0.6 0.4 1 1.32s
(f) 2 20 −1.1i 0.7 0.6 0.4 1 1.47s

deviate from the characteristic forms seen at higher p values. Figures 8A–C, demonstrate more com-
plex behavior for non-integer values of p. The set consists of small copies of a Mandelbrot sets. When 
the value of p increase the sets become smaller and occupy bigger space. We notice that the smaller 
sets start to overlap. With the further decrease in decimal value p, the overlapping becomes larger 
and the shapes of the smaller copies change because we do not see the characteristic shapes of the 
sets visible for the higher values of p. Despite this, the patterns retain their fascinating rosette-like 
symmetry. The image generation time for each iteration is also recorded. In the second example, 



Ahmad I., et al. Results in Nonlinear Anal. 8 (2025), 118–135 	 128

p = 1 p = 3 p = 4

p = 6 p = 11 p = 20

(A) (B) (C)

(D) (E) (F)

Figure 7: Viscosity Mandelbrot set for integer values of p generated via Algorithm 2.

Table 7: Effect of non-integer value of p while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 1.6 −1.1i 0.7 0.6 0.4 1 0.88s
(b) 2 3.5 −1.1i 0.7 0.6 0.4 1 0.92s
(c) 2 6.5 −1.1i 0.7 0.6 0.4 1 1.09s
(d) 2 9.5 −1.1i 0.7 0.6 0.4 1 1.21s
(e) 2 12.5 −1.1i 0.7 0.6 0.4 1 1.32s
(f ) 2 16.4 −1.1i 0.7 0.6 0.4 1 1.47s

p = 1.6

p = 9.5 p = 12.5 p = 16.5

p = 3.5 p = 6.5

(A) (B) (C)

(D) (E) (F)

Figure 8: Viscosity Mandelbrot set for non-integer values of p generated via Algorithm 2.

we see the effect on ϑ and ς to generate viscosity Mandelbrot sets via Algorithm 2 for U(z). The 
Mandelbrot sets were produced with the following fixed parameters.

In this example, the images were categorized into three groups. In each group, one parameter 
from ϑ or ς was held constant while the other was systematically varied to observe its effects. In 
Figure 9A–C,G,H,J,K, the Mandelbrot set structures exhibit strong rotational and axial symmetry, 
with the first three, seventh, and eighth images showing four-fold symmetry. Each image features 
intricate, self-similar boundaries and bulb-like red regions that merge toward the center, increas-
ing density. A vivid color gradient illustrates escape time, with deep red for non-escaping points, 
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and blue to cyan for faster escapes. Bright outlines mark the boundary regions. Each lobe contains 
intricate, self-similar patterns, and rotational dynamics. Variations in lobe size and density reflect 
changes in parameters and escape radius, while the central region remains stable. Moreover, when 
ϑ and ς exceed 0.5, the smaller sets begin to overlap, and as these parameters increase further, the 
overlapping becomes more pronounced while the shapes of the smaller copies deviate from their char-
acteristic structures observed at higher values and intricate rosette patterns (see, Figures 9D–F,I,L). 
In contrast, at lower values of ϑ and ς, the sets retain more classical structures without overlapping 
effects.

In the third example, viscosity Mandelbrot sets are generated via Algorithm 2 for U(z).
This example systematically investigates the influence of parameters Ψ, a, b by organizing the 

results into three groups (Figures 10–12), each focusing on one parameter while keeping the others 
constant. The fractal displays 4-fold radial symmetry, forming four petal-like lobes around a central 
point. Bright outlines mark the boundary regions. Each lobe contains intricate, self-similar patterns. 
Moreover, Moreover, when a and b are purely imaginary, the smaller sets begin to overlap, and the 
overlapping becomes more pronounced while the complex values of a and b (see, Figures 11,12B,C). 
Visually, the structure resembles floral or Rangoli designs, combining mathematical complexity with 
artistic beauty. The image generation time for each iteration is also recorded.

This example illustrates the influence of the exponent n on the generation of viscosity Mandelbrot 
sets using Algorithm 2 for U(z). The Mandelbrot sets were produced with the following parameter 
values: p = 8, Ψ = 1.1, a = 0.35i, b = 0.85i, ϑ = 0.5, and ς = 0.65. In Figures 13A–L, the fractal struc-
tures, presented as Mandelbrot sets, exhibit strong radial symmetry and are reminiscent of floral, 
flower-like, or star-shaped patterns. Specifically, Figure 13B features a 7-lobed structure symmetri-
cally arranged around a large, empty central circle, with each lobe evenly spaced. The background 
transitions from deep blue, indicating rapid escape, to lighter blues and bright reds near the fractal 
boundaries, representing slower escape times. Each red lobe displays intricate, self-similar patterns 
with finely jagged and detailed edges, characteristic of fractal structures. The large central void and 
clearly separated lobes suggest minimal overlap among the structures. In other images, multiple 
smaller red “flower-like” fractal copies are symmetrically arranged around a central opening. The 
remaining images in the series (Figures 13A–L) consistently maintain the same core fractal charac-
teristics, with variations arising from parameter adjustments. Each figure preserves the hallmark 
radial symmetry, floral or star-like morphology, and gradient color schemes transitioning from deep 
blue to vibrant red, reflecting differences in escape dynamics. The smaller size and tighter packing 
of the lobes indicate parameter changes that increase the number of fractal copies while preserving 
overall symmetry. It is observed that this parametric manipulation serves as a powerful tool for con-
trolling the visual and structural properties of the fractals. It is seen that Our analysis demonstrates 

Table 8: Effect of the parameters ϑ and ς while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 4 1.05 0.001 0.001 0.5i 0.65 0.78s
(b) 2 4 1.05 0.01 0.01 0.5i 0.65 0.86s
(c) 2 4 1.05 0.4 0.4 0.5i 0.65 0.93s
(d) 2 4 1.05 0.6 0.6 0.5i 0.65 0.99s
(e) 2 4 1.05 0.85 0.85 0.5i 0.65 1.08s
(f) 2 4 1.05 0.99 0.99 0.5i 0.65 1.17s
(g) 2 4 1.05 0.25 0.55 0.5i 0.65 1.27s
(h) 2 4 1.05 0.25 0.75 0.5i 0.65 1.36s
(i) 2 4 1.05 0.25 0.95 0.5i 0.65 1.47s
(j) 2 4 1.05 0.01 0.55 0.5i 0.65 1.55s
(k) 2 4 1.05 0.35 0.55 0.5i 0.65 1.62s
(l) 2 4 1.05 0.93 0.55 0.5i 0.65 1.74s
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ϑ = 0.001 and ς = 0.001

ϑ = 0.99 and ς = 0.99ϑ = 0.85 and ς = 0.85ϑ = 0.6 and ς = 0.6

ϑ = 0.93 and ς = 0.55ϑ = 0.35 and ς = 0.55ϑ = 0.01 and ς = 0.55

ϑ = 0.25 and ς = 0.95ϑ = 0.25 and ς = 0.75ϑ = 0.25 and ς = 0.5

ϑ = 0.1 and ς = 0.1 ϑ = 0.4 and ς = 0.4

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Figure 9: Viscosity Mandelbrot sets generated for different ϑ and ς values via Algorithm 2.

Table 9: Effect of the parameter Ψ while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 4 1.05 0.65 0.45 −0.65i 0.55 0.98s
(b) 2 4 1.05 0.65 0.45 −0.65i 0.55 1.12s
(c) 2 4 1.05 0.65 0.45 −0.65i 0.55 1.21s

Ψ = 1.35 Ψ = –1.35 Ψ = –1.5i

(A) (B) (C)

Figure 10: Viscosity Mandelbrot sets generated for different Ψ value via Algorithm 2.

Table 10: Effect of the parameter a while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 4 1.25 0.65 0.45 0.79 −0.55 0.95s
(b) 2 4 1.25 0.65 0.45 0.79i −0.55 1.14s
(c) 2 4 1.25 0.65 0.45 0.79 + 0.35i −0.55 1.29s
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a = 0.79 a = 0.79i a = 0.79 + 0.35i

(A) (B) (C)

Figure 11: Viscosity Mandelbrot sets generated for different a value via Algorithm 2.

Table 11: Effect of the parameter b while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 4 1.85 0.65 0.45 0.35 1.05 1.05s
(b) 2 4 1.85 0.65 0.45 0.35 1.05i 1.19s
(c) 2 4 1.85 0.65 0.45 0.35 1.05 + 1.15i 1.29s

b = 1.05 b = 1.05i b = 1.051 + 1.051i

(A) (B) (C)

Figure 12: Viscosity Mandelbrot sets generated for different b value via Algorithm 2.

Table 12: Effect of the parameter n while all other parameters are fixed.

n p Ψ ϑ ς a b IET
(a) 2 8 1.1 0.5 0.65 0.35i 0.85i 0.88s
(b) 3 8 1.1 0.5 0.65 0.35i 0.85i 0.96s
(c) 4 8 1.1 0.5 0.65 0.35i 0.85i 1.11s
(d) 5 8 1.1 0.5 0.65 0.35i 0.85i 1.21s
(e) 6 8 1.1 0.5 0.65 0.35i 0.85i 1.32s
(f ) 7 8 1.1 0.5 0.65 0.35i 0.85i 1.42s
(g) 8 8 1.1 0.5 0.65 0.35i 0.85i 1.49s
(h) 9 8 1.1 0.5 0.65 0.35i 0.85i 1.54s
(i) 10 8 1.1 0.5 0.65 0.35i 0.85i 1.61s
(j) 15 8 1.1 0.5 0.65 0.35i 0.85i 1.72s
(k) 25 8 1.1 0.5 0.65 0.35i 0.85i 1.84s
(l) 35 8 1.1 0.5 0.65 0.35i 0.85i 1.97s

that parameters Ψ, α, p, a, b, ϑ, ς and the exponent n fundamentally control fractal morphology, 
while convergence criteria govern image resolution. These results not only highlight the mathemat-
ical depth of the study but also underscore the powerful fusion of computational techniques and cre-
ative expression.

•	 the parameters Ψ, α, p, a, b, ϑ, ς and the exponent n play a very important role in giving shape, 
size, and colour to the fractals.

•	 the convergence criteria derived for the fractals are also playing a very crucial role in deter-
mining the resolution and richness of the pixels in the fractals.

•	 all the fractals developed in this paper are very novel, aesthetic, and pleasing as the complex 
function U(z).



Ahmad I., et al. Results in Nonlinear Anal. 8 (2025), 118–135 	 132

n = 2

n = 5

n = 8

n = 12 n = 25 n = 35

n = 9 n = 10

n = 6 n = 7

n = 3 n = 4

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Figure 13: Viscosity Mandelbrot sets generated for different n value via Algorithm 2.

5. Numerical Result

The examples in Section 4 demonstrate a clear variation in the shapes and sizes of the fractal sets 
generated using the viscosity approximation-type iterative method, revealing a complex, non-trivial 
dependency on the parameters ϑ and ς. To investigate this relationship, we analyze two quantitative 
measures—the Average Escape Time (AET) and the Non-Escaping Area Index (NAI)—along with 
computation time. These measures provide insight into the relative size of the sets and the speed 
of the computations; they are directly influenced by the number of non-escaping points, as a higher 
concentration of these points results in higher AET and NAI values. Consequently, a significant dif-
ference in these measures, particularly the NAI, between two parameter sets indicates a substantial 
difference in the sizes of the corresponding Mandelbrot or Julia sets. For our numerical experiments, 
we generated a total of 12,00 fractals by varying ϑ and ς across 100 equally spaced values each, pro-
ducing 200 X 200 pixel images using Algorithms 1 and 2 from Section 4. All computations were per-
formed in MATLAB R2024a (version 24.1.0.2537033, 64-bit) on a standard HP laptop featuring an 
Intel(R) Core(TM) i7-14700HX (2.10 GHz) processor and 32 GB of RAM and MicrosoftWindows 11.

In the first example, we generated quadratic Julia sets using the viscosity approximation-type 
iterative method for the following parameters: K = 25, n = 2, h(z) = 0.89iz + 2.4.A = [−1.75, 1.75]2 
with two different value of α = 0.5 and α = 0.07 +0.87i. The obtained results for the viscosity approx-
imation-type iterative method are presented in Figure 14. From the plot, we see that both measures 
(AET, ANI, time) are non-trivial and that the function of the parameters is non-monotonic. Both plots 
have a similar shape, but the plot for the time is noisier, whereas the plot for the AET and ANI are 
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smooth. Minimal time, equal to 0.2s, is attained at ϑ = 0.5 and ς = 0.5, whereas the maximal value 
(0.97s) at ϑ, ς = 0.5. For the AET and ANI measure, the dispersion of the values is wide. Comparing 
these results with the results for Picard’s iteration, we see that the generated Julia sets in the given 
area can be generated using a lower number of iterations. Moreover, from both plots, we can observe 
that the highest values of the measures are obtained when the ϑ and ς values varies.

In the next example, Mandelbrot sets for n = 4 were generated using the viscosity approxima-
tion-type iterative method. The parameters used to generate the images of the sets were the follow-
ing: K = 25, n = 4, A = [−1.5, 1.5]2 with h(z) = −0.65iz + 0.55 and h(z) = −0.35iz + 0.85i. The results for 
the viscosity approximation-type iterative method in Figure 15.

The plots reveal that the dependency of both measures on the parameters is non-trivial and 
non-monotonic. While the overall shapes of the AET, ANI, and time graphs are similar, the computa-
tion time plot is notably noisy compared to the smooth profiles of the AET and ANI. The generation 
time varies significantly, with a minimum of 0.016s observed at ϑ = 0.001 and ς = 0.001, and a max-
imum of 0.95s at ϑ = 0.99 and ς = 0.99. This demonstrates that the parameters ϑ and ς have a sub-
stantial impact on the generation time, AET, and ANI. Crucially, the shortest times achieved with 
the viscosity approximationtype iterative method are faster than those obtained using the standard 
Picard iteration.

Figure 14: AET, NAI, and time (s) plots of iterations in the parameters’ space for the Julia set with  
α = 0.5 and α = 0.07 + 0.87i.
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Figure 15: AET, NAI, and time (s) plots of iterations in the parameters’ space for the Mandelbrot sets with  
h(z) = −0.65iz + 0.55 and h(z) = −0.35iz + 0.85i.

6. Conclusion

We developed an escape criterion based on the viscosity approximation-type iterative method for the 
considered complex function. Using this framework, we generated viscosity Julia and Mandelbrot 
sets and visualized them through Algorithms 1 and 2, respectively. MATLAB software was employed 
to analyze the behavior of these fractals under varying parameter values, revealing intricate and 
non-classical structures. Our findings show that parameters such as Ψ, α, p, a, b, ϑ, ς and the expo-
nent n significantly influence the shape, color, and complexity of the fractals—even small variations 
lead to noticeable changes. The graphical examples showed that the proposed iteration scheme has 
the capacity to generate new fractal forms. The numerical examples showed that the dependence 
of the considered measures (AET, ANI, times (s)) on the iteration’s parameters is a non-trivial and 
non-monotonic function. The results also showed that the ϑ parameter has greater impact on the 
measures than the ς parameter. In future work, we aim to explore further generalizations using 
modified rational exponential and sine functions, and to include additional metrics such as genera-
tion time and ANI in our analysis. The visual richness and diversity of the generated fractals also 
point to potential applications in the textile industry, especially in pattern design and printing.
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[11]	 P. Maingé: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. 
with Appl., 59(1), (2010), 74–79, https://doi.org/10.1016/j.camwa.2009.09.003

[12]	 A. Maudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 2000, 241, 46–55.
[13]	 P. Muthukumar, P. Balasubramaniam, Feedback synchronization of the fractional order reverse butterfly-shaped cha-

otic system and its application to digital cryptography, Nonlinear Dyn., 74, (2013), 1169-1181, https://doi.org/10.1007/
s11071-013-1032-3

[14]	 K. Nakamura, Iterated inversion system: An algorithm for efficiently visualizing Kleinian groups and extending the 
possibilities of fractal art, J. Math. Arts, 15, (2021), 106-136, https://doi.org/10.1080/17513472.2021.1943998.

[15]	 A. Nandal, R. Chugh and M. Postolache,Iteration process for fixed point problems and zero of maximal monotone oper-
ators, Symmetry, 11 (5), pp. 655, 2019.

[16]	 P. C. Ouyang, K. W. Chung, A. Nicolas and K. Gdawiec, Self-similar fractal drawings inspired by M. C. Escher’s print 
square limit, ACM Trans. Graphic., 40, (2021), 1-34, https://doi.org/10.1145/3456298.

[17]	 W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continu-
ous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (9), (2011), 3006-3014.

[18]	 S. Rawat, D.J. Prajapati, A. Tomar and K. Gdawiec, Generation of Mandelbrot and Julia sets for generalized rational 
maps using SP-iteration process equipped with s-convexity, Math. Comput. Simul., 220, (2024), 148-169.

[19]	 A. A. Shahid, W. Nazeer and K. Gdawiec, The Picard-Mann iteration with s-convexity in the generation of Mandelbrot 
and Julia sets, Monatsh. Math., 195, (2021), 565-584, https://doi.org/10.1007/s00605-021-01591-z.

[20]	 M. Tanveer, W. Nazeer and K. Gdawiec, New escape criteria for complex fractals generation in Jungck-CR orbit, 
Indian J. Pure Appl. Math., 51, (2020), 1285-1303, https://doi.org/10.1007/s13226-020-0466-9.

[21]	 G. I. Usurelu, A. Bejenaru and M. Postolache, Newton-like methods and polynomiographic visualization of modified 
Thakur processes, Int. J. Comput. Math., 98, (2021), 1049-1068, https://doi.org/10.1080/00207160.2020.1802017.

https://doi.org/10.1016/j.rico.2025.100525�
https://doi.org/10.19139/soic-2310-5070-1918�
https://doi.org/10.19139/soic-2310-5070-1918�
https://doi.org/10.3390/fractalfract5040272�
https://doi.org/10.1016/j.rico.2025.100516�
https://doi.org/10.1016/j.rico.2025.100516�
https://doi.org/10.3390/fractalfract6020089�
http://dx.doi.org/10.3390/math10183324�
http://dx.doi.org/10.1016/j.chaos.2022.112540�
http://dx.doi.org/10.1016/j.chaos.2022.112540�
https://doi.org/10.1016/j.camwa.2009.09.003�
https://doi.org/10.1007/s11071-013-1032-3�
https://doi.org/10.1007/s11071-013-1032-3�
https://doi.org/10.1080/17513472.2021.1943998�
https://doi.org/10.1145/3456298�
https://doi.org/10.1007/s00605-021-01591-z�
https://doi.org/10.1007/s13226-020-0466-9�
https://doi.org/10.1080/00207160.2020.1802017�

	Escape_criteria_for_Viscosity_Mandelbrot
	Preliminaries
	_bookmark0
	_bookmark1
	_bookmark2
	_bookmark4
	_bookmark6
	_GoBack
	_bookmark7
	_bookmark8
	_bookmark9
	Graphical_Examples
	Viscosity_Julia_sets_generation_for_U(z)
	Mandelbrot_sets_generation_for_U(z)=zn+p
	Numerical_Result
	Conclusion
	Acknowledgments
	Conflicts_of_Interest
	_bookmark24
	_bookmark25
	_bookmark26
	_bookmark27
	_bookmark28
	_bookmark29
	_bookmark30
	_bookmark31
	_bookmark32
	_bookmark33
	_bookmark34
	_bookmark35
	_bookmark36
	_bookmark37
	_bookmark38
	_bookmark39
	_bookmark40
	_bookmark41
	_bookmark42
	_bookmark43

