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Abstract

This study presents the notions of Von-Neumann regular @-algebra and @-digraph. Given a Q-algebra
X, the corresponding graph, indicated by I"(X), is a directed graph with vertices that correspond to
elements of X. For two different elements a, b € X, an Arc from a to b (written as a — b) exists if and
only if a A b =0, where a A b = (b * a) * a. We elaborate these ideas and offer examples. The paper
also, analyze the @-algebra (Zn;—,O) and indicates that it is a left Von-Neumann regular @-algebra.
In addition, features of the @-digraph corresponding to the @-algebra (Zn;—,O) will be examined. The
main conclusion of this research is that the digraph linked. The principal finding of this paper will
shed light on the digraph associated with Z (1) forms a tree digraph for all n > 1.
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1. Introduction

BCK-algebra and BCl-algebra are two abstract algebraic structures that were presented by Imai
and Is’eki [7,8]. The BCK-algebra class is closely related to the broader BCI-algebra class, as is well
known. The BCH-algebra, which includes the BCI-algebra, was suggested by Hu and Li [9]. D-algebra
was created by Neggers and Kim [10] and is defined as follows:

1. a*a=e,
. e*a=e,
m.Ifa*f=eand f*a=e, then o= p.
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This idea serves as a substantial extension of BCK-algebra. Researchers have explored multiple
links between d-algebra and BCK-algebra, as well as examined how these structures relate to ori-
ented digraphs. Meanwhile, Jun, Roh, and Kim [6] presented the concept of BH-algebra as follows:

1. a*a=e,
. a*e=aq;
. Ifa*f=eand f*ax=e, then = p.

The BH-algebra structure broadens the scope of BCH, BCI, and BCK-algebras. It has been estab-
lished that a maximal ideal exists within bounded BH-algebras. The concept of Q-algebra, introduced
by Neggers, Ahn, and Kim, offers a further generalization encompassing BCH, BCI, and BCK-algebras,
and also generalizes certain theorems known from BCI-algebra theory. In addition, their introduction
of “quadratic” Q-algebras led to the proof that every quadratic Q-algebra (A ; e), where ee X, can be
expressed as a* f=o— [ +e, where a,fc A and A represents a field with |A| >3, thus revealing a
specific linear characteristic in the product.

In [11], Taloukolaei and Sahebi presented the idea of the Von Neumann regular graph made from a
ring. They designated the related Von Neumann regular graph as G . (R) and defined Vnr(R) as the
collection of all regular elements inside R. Two vertices are linked exactly when their total is a regular
element in R. The vertices of this graph correspond to elements of R. Their study focused on funda-
mental characteristics of this graph, such as its diameter, connectedness, planarity, and girth. Using
Vizing’s theorem, they classified the Von Neumann regular graph as a first-class graph. In related work,
Jun and Lee [12] defined graphs associated with CK-algebras and BCI-algebras. For a CK-algebra
or BCI-algebra A, the graph I'(A) has vertices representing elements of A, with adjacency between
vertices a and b determined by the condition I(a, b) = 0, where I(A)={he A:h*h’=0 for all h'e A}.
They provided several characterizations of these graphs, including the fact that 7(A) is con-
nected when A is a BCI-algebra, and that every other nonzero vertex is adjacent to the vertex 0.
Furthermore, graphs related to KU-algebras and UP-algebras were introduced in [5,6]. For A being
either a UP-algebra or KU-algebra, the graph G(A) is defined with vertices as elements of A, where
two vertices a and b are adjacent if a A b = 0, where a A b = (b * a) * b. These studies presented
numerous properties and characterizations of such graphs. Notably, in both cases, the diameter sat-
isfies diam(G(A)) <3, and the graph is connected. Moreover, if A and V are two such algebras and
G(A) =G(V), then their equivalence class graphs also satisfy G,(A) = G,(V), where G,(A) denotes the
graph formed by the equivalence classes of A. The current work extends these ideas to Q-algebras,
a generalization that incorporates BCH, BCI, and BCK-algebras among others. The directed graphs
(Q-digraphs) associated with Q-algebras have vertices as elements with arcs defined by a zero opera-
tion condition reflecting the Q-algebra structure. The manuscript shows that these digraphs capture
finer structural features such as tree and anti-arborescence forms for specific classes Z . This
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provides a broad unifying framework for understanding algebraic regularity and relatlonal graph
structures beyond previous specific algebra classes.

Building on existing research, this study extends the notion of Von Neumann regular elements from
ring theory to the framework of @-algebras. Additionally, we introduce the new concept of @-graphs.
Let (X; *, 0) be a @-algebra. An element a € X is called a left Von Neumann regular element if there
exists some b € X satisfying the condition a = (a * b) * a. Similarly, a is termed a right Von Neumann
regular element if there exists b € X such thata=a * (b * a). In both cases, the element b is referred to
as a Von Neumann inverse of a. An element a in a @-algebra (X, *, 0) is Von Neumann regular if there
exists b € X simultaneously satisfying the equationsa=(a *b) *aanda=a * (b * a). A Q-algebra is
called left (respectively right) Von Neumann regular when all its elements satisfy the first (respec-
tively second) equation, and is fully Von Neumann regular when both conditions hold throughout. We
associate to any @-algebra X a directed graph I'(X) whose vertex set is X itself, with directed edges
x — y between distinct elements existing precisely when (v * x) * x = 0. This work investigates the
characterization of Von Neumann regular elements in the @-algebras Z  for selected integers n, along
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with the structural properties of their corresponding digraphs 7'(Z,). In Section 3, Our study exam-
ines three key aspects of @-algebra structures. First, we analyze the modular arithmetic properties
of (Zn;—,O) , where the congruence relation (n—£k)—(n—-1i)—(n—j))=0 (mod n) holds for sequential
indices j = 1,2,3,... until termination when n—ke {0,1}, with i =j + 1 and &£ =i + j. Next, we charac-
terize the regularity properties, proving that (Zn;—,()) constitutes a left-regular @-algebra under the
Von Neumann criterion. Finally, we explore associated digraph structures, showing that for 7'(Z))
representing Z , the specific case L, . always produces an arborescence for n>1. In disconnected
cases, components containing vertices adjacent to 0 form subalgebras, with exactly n/2 such compo-
nents existing. These exhibit distinct patterns based on parity: forming arithmetic progressions when
odd, or requiring successive halving until oddness when even.

2. Preliminaries
This section provides fundamental definitions and associated concepts.

Definition 2.1: A nonempty set X, a distinct element 0, and a binary operation “*” on X that meets
the following requirements constitute a @-algebra:

e For every element x in X, applying “*” to x with itself yields O,

e For any x in X, the operation of x with O returns x,

o The operation satisfies a modified associativity: for all x, y, zin X, the equality (x *y) *z=(x*2) * y
holds.

Declaring x < y precisely when x * y = 0 allows us to construct a partial order < on X.

Example 2.2. Consider the set of all integers Z equipped with binary subtraction and zero element.
The triple (Z,—,0), where “~” denotes the standard integer subtraction operation and O represents the
additive identity, naturally forms a @-algebra structure. This construction emerges from interpreting
the subtraction operation as the fundamental binary relation and zero as the nullary operation sat-
isfying the @-algebra axioms.

Example 2.3. Examine the next table, which defines the operation “*” on the finite set X={0, 1, 2, 3}:
Table 1: Operation table for Example 2.3

*10(1]121]3
0(0(0(0|0
1{1{0{0]|0
21210(0(0
3131330

One can easily confirm that the structure (X; *, 0) adheres to the defining axioms of a @-algebra.

Definition 2.4. For a given Q-algebra (X; *, 0), a non-empty subset Z ¢ X constitutes an ideal if it
satisfies:

(1) The zero element belongs to Z, i.e., 0 Z,
(2) For all elements a, b € X, the membership a * b € 7 combined with b € 7 impliesa e T.

Example 2.5. Within the @-algebra (Z,,; —, 0), the set Z = {0, 4, 8} forms an ideal.

127

Definition 2.6: An element x of a ring R exhibits Von Neumann regularity if there exists y € R such
that x = xyx. When this property holds for every element of R, we say R is a Von Neumann regular
ring.
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Corollary 2.7. For a regular element a in Z,, the element o’ acts as a Von Neumann inverse of a
in Z,. In particular,

a’=a’" (modn).

A directed graph, often called a digraph, G is composed of three fundamental parts: a set of verti-
ces V=r,r,, .., acollection of edges E =1, {,, ..., and a function y which maps each edge to a specific
ordered pair of vertices (r, rj). In graphical terms, vertices appear as points, and edges are shown
as arrows pointing from vertex r, toward vertex r. For example, Figure 1 illustrates a digraph that

includes five vertices connected by ten edges. Another term used for digraphs is oriented graphs.

£y

b
€4
€
% Yy
34 Y*2 ” af f)en
3
uy s Ys

Figure 1: The digraph containing five vertices and ten edges.

In a directed graph, or digraph, each edge has a direction, meaning it originates from one vertex
and points toward another. The vertex r, from which an edge ¢, starts is called the initial vertex of ¢,,
while the vertex ¢, where ¢, ends is known as the terminal vertex.

The count of edges that emanate from a vertex r, is referred to as its out-degree (also called
out-valence or outward demidegree), denoted by d*(r). Conversely, the number of edges that arrive at
r. is called its in-degree (also known as invalence or inward demidegree), denoted by d(r)). For exam-
ple, in Figure 1:

d'(r)=3and d () =1,
d'(r,)=1and d (r,) =2,
d'(r,)=4and d (r,) =0.

It is a fundamental property of digraphs that the total sum of all vertices’ out-degrees equals
the total sum of all in-degrees. Both sums correspond to the total number of edges in the digraph,

expressed mathematically as:
2.d (n)=2d (1)
i=1 i=1

A vertex is called isolated if it has no incoming or outgoing edges, meaning both its in-degree and
out-degree are zero. A vertex r is termed pendant if the sum of its in-degree and out-degree equals
one, that is,

d'(r)+d (r)=1.

Definition 2.8. [13] A tree digraph is a directed graph that is connected and free from any form of
cycles, meaning it does not contain directed cycles or semicircuits. For a tree digraph with n vertices,
the number of edges is always exactly n — 1.
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3. Some properties of Z  as a Q-algebra

This section delves into the characteristics of a specific type of Q-algebra, exploring examples, theo-
rems, and definitions to understand its properties.

Example 3.1. Suppose that Z  is the set of integers modulo n. Then (Z,;-,0) form a Q-algebra.

The following theorem establishes essential modular arithmetic relations in the Q-algebra Z ,
which form the foundational structure for later results on Von-Neumann regularity

Theorem 3.2. Let (Zn;—,O) be Q — algebra with subtraction taken modulo n. For integers p, r, t satis-
fyvingr=t+1landp=r+t, we have (n—-p)—(n—-r)—(n—t)) mod n =0. Stop the process when (n —p)
e {0, 1}.

Proof. By mathematical indication. First step: suppose that ¢ = 1. Then
(n-3)-(n-2)—(n-1))modn
=(n-3-n+2-n+1)modn=-nmodn =0

So, it is true for £ = 1. Second step: Asume that it is true for £ = y. Then Then ((n —p) - (n —r) — (n—y))
mod n=0. Where r=y+landp=r+¢t.y=1,2,3..(n-p)=0o0r 1. We need to prove for w + 1.
Then(n-p)—-(n-r)-(n-(y+1) modn=n-2y-3-n+y+2-n+y+1) mod n=-n mod n=0.

O

Example 3.3. Let (Z,; —, 0) be a Q- algebra. Then by Theorem 3.2:
(7-8-9)mod10=-10mod10=0
(5-7-8)mod10=-10mod10=0
(83=6-7)mod10=-10mod10=0
(1-5-6)mod10=-10mod10=0

Example 3.4. Let (Z,.; —, 0) be a Q - algebra. Then by Theorem 3.2 we have

11’
(8-=9-10)mod11=-11mod11=0
(6-8-9)mod11=-11mod11=0
(4-7-8modll=-11mod11=0
(2-6-7)mod11=-11mod11=0
(0-5-6)mod11=-11mod11=0

Corollary 3.5. Consider the Q-algebra (Zn;—,O) . Then the number of (n—-p)—-(n—-r)—(n—t)) mod n

n-1 n-2 . .
, if nis even.

=0inZ,1is ,ifnisodd and is

Corollary 3.6. Consider the Q — algebra(Zn;—,O). Then (n—t)+(n—-r)+(n—-p))modn =0 wheret=1,
2,3,....(n—-p)=0o0rl,r=t+landp=r+t.

Definition 3.7. Suppose that (X; *, 0) is a Q — algebra and @ #Y < X, then (Y ; *, 0) is a sub Q — alge-
bra, if (Y; *, 0) 1s Q — algebra.
Example 3.8. Let (Z,,; —, 0) be the Q- algebra with subtraction taken modulo 12. the set Y =
{0,2,4,6,8,10} is a sub Q — algebra of (Z ,; —, 0).

In the following result we give a characteraization of sub Q — algebra
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Theorem 3.9. Let (X ; *, 0) be Q - algebra and let @S c X . Then (S; *, 0)is asub Q - algebra of X
if and only if the following conditions are satisfied:

a) 0e S,
b) (x*y)*ze Sforallx,y, ze S.

Proof. Suppose that S is a sub Q - algebra, then imples 0 € S, then (x *y) *z=(x*y) *z, s0(x * y) *
ze S.

Coversely, assume that Sc X, 0e Sand (x*y)*ze S. Let x, y, z€ S, then we get x * x = 0 and
x*0=xforall x. Since (x*y)*z=(x*y)*ye S.S0(S;*, 0)is asub Q - algebra of X. O

Theorem 3.10. Let (X,; -, 0) and (X,; -, 0) be two sub Q- algebras of a Q-algebra (Z,;—,0). Then the
intersection of X, and X, also is sub @ - algebra.

Proof. Suppose that X, and X, are sub @- algebra of Z,. So 0e X, n X, #J. Let x,y,ze X, nX,. So
x,y,z€ X andx, y, ze€ X,. Since X, and X, are sub Q- algebra, so (x — y) — z € X, N X,. Therefore
(X, " X,;—,0) is a sub Q— algebra. O

Example 3.11. Let X =10, 4, 8} and X, = {0, 2, 4, 6, 8, 10} be two sub Q- algebra of (Z,,; —, 0). Then
X, N X, is sub Q— algebra of a Q— algebra (Z,; —, 0).

127

Theorem 3.12. Union of two Sub Q-algebra is not necessarily a sub Q-algebra. Let (Z_;-,0) be a Q-
algebra, and let X and X be two sub Q-algebras of Z . The union X, U X, of these two sub Q- algebras
is a sub Q- algebra of Z if X, c X, or X, c X.

Proof. Suppose X, c X,. Then X, U X, = X,, which is a sub Q— algebra of Z . Similary, if X, c X,. Then
X, uX, =X, which is a sub Q- algebra of Z . (|
Example 3.13. Let X, ={0,4,8} and X, ={0,3,6,9} be two sub Q- algebra of (Z,,; —, 0). Then X, U X,

12

is not sub Q- algebra of a Q— algebra (Z,,; —, 0). Since X, U X, ={0,3,4,6,8,9}, but (0-3) -4 =-7mod

12°

12=5¢ X, U X,. Since X, c X,. Then X, UX, =X, is a sub Q— algebra of a Q— algebra Z .

Definition 3.14. Consider two @-algebras, (X ;*,0) and (X,;*,,0). The product of X and X,, denoted
as X, x X, is defined as the set of all ordered pairs (x,, x,) where x, is an element of x, and x, is an
element of X,. This set is equipped with the operation defined by: (x,,x,) * (y,,y,) =(x, *, y1,x, *, y2).

Example 3.15. Let (Z,;—-,0) and (Z,;—,0) are Q— algebra. Then (Z, xZ,;—,0) is Q— algebra.

4. Von Neumonn regular Q- algebra

In this section ,we define Von- Neumonn regular element for Q— algebra and left (right) Von-Neumonn
regular Q— algebra.

Definition 4.1. Let (X ; *, 0) be a @-algebra and let ae X. The element a is called left Von Neumonn
regular element if there exist an element w in X such that a = (¢ * w) * a. Similarly, a is called right
Von-Neumonn regular element if there exist an element w in X such that a = a * (w * a). Any such
w 1s called a Von Neumonn inverse of a. If there exists w in X such thata=(a *w) *a=a * (w * a),
then a is a Von-Neumonn regular element in X. The Q- algebra X is said to be left (respectively right)
Von-Neumonn regular if every element of X is left (respectively right) Von Neumonn regular. If X is
both left and right Von Neumonn regular, thenit is called Von Neumonn regular Q— algebra.

Example 4.2. Consider the finite set X ={0,1,2,3} and “*” is an operation defined in X as the following
table:
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Table 2: The operation for Example 4.2.

*10]1]2]3
0/0|0]0]O0
1/1/0]0(0
21210(0|0
313(3[3]0

Then it is easy to show that (X; *, 0) form a Q- algebra. The left Von-Neumonn regular element in
(X; *, 0) is only zero element, but right Von-Neumonn regular element is all the set X.

Example 4.3. Consider the finite set X = {0,1,2} and “*” is an operation defined in X as the following
table:
Table 3: The operation for Example 4.3.

*10(|1]2
0j0]2|1
11102
2121110

Then again (X; *, 0) form a Q— algebra. The elements of the set X are left and right Von-Neumonn
regular elements, but X is not Von-Neumonn regular Q— algebra, since (a * w) * a # a *(w * a) for all
a, win X.

Remark 4.4. Consider the Q— algebra (Zn;—,O). Then its left Von-Neumonn regular elements are
{0,1,...,n—1}.

Example 4.5. To show (Z, ; —, 0) is a left Von-Neumonn regular Q- algebra, let

a=0=(0-0)-0)mod5=0
a=1=(1-4)-1)mod5=-4mod5=1
a=2=(2-3)-2)mod5=-3mod5=2
a=3=(83-2)-3)mod5=-2mod5=3
a=4=((4-1)—4)mod5=—-1mod5 =4.

Corollary 4.6. The Q- algebra (Zn;—,O) is a left Von-Neumonn regular Q- algebra.
The following result identifies explicit Von-Neumann inverses for left regular elements, a key step
to understanding the fine structure of regular elements in Z .

Theorem 4.7. If a is a left regular element in Z,, then (n — a) is a Von-Neumann inverse for a.

Proof. Let a € Z, be a Von Neumann regular element. Then

((a-(n—a))—a)modn=—-(n—-a)modn
=nmodn+amodn=amodn =a.

Proposition 4.8. Consider that a € Z,, and w is a Von-Neumann inverse for a.
Then
a—w=0

Proof. If w form a Von-Neumann inverse for a. Since by Theorem 4.7. w=n—a. Thena-w=a-n—-a=
a—a—n=-nmodn=0. O
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Proposition 4.9. Consider the Q- algebra X. Then we have the following equivalent statements for
every a in X.

(1 If a is regular element,
(2)a =(a* a)* b, where b is Von-Neumann inverse for a.

Proof. (1) = (2) Let a be a regular element. Then there exist b € Xsuchthata=(@*b)*a=a* (b * a),
thena=(@*b)*a=(@*a)*b.

(2) = (1) Suppose that b is Von Neumann inverse for a. Thena=(a *a) * b, we havea=(a*a) * b=
(a * b) * a. Thus a is Von-Neumann regula element. O

Corollary 4.10. Consider an element a in (Zn;—,O) that is Von Neumann regular. Then, there is one
and only one element b in Z, satisfying the conditions (a —b)-a=aand (b—-a)—-b =b.

5. Digraph of Q- algebra

Definition 5.1. Given a Q— algebra X, its graph I'(X) is defined as a directed graph whose vertices
correspond to the elements of X. For any two distinct elements x, y € X, there is an arc from x to y
(denoted x — y) if and only if the expression x A y equals zero, where x A y is given by (v * x) * x. This
type of directed graph is known as a Q- digraph.

Example 5.2. Consider the set X ={0, 1, 2} accompanied by the table below:
Table 4: The operation for Example 5.2.

*10[|1]2
0j02]1
11102
2121110

Then (X; *, 0) is a Q— algebra. The digraph of I'(X) is:

Figure 2: The diagraph for Example 5.2.
Table 5: The operation for Example 5.3.

*10[1]2](3
0/(0(0(0|0
1{1{0(0]0
212/0]0]0
33330

Example 5.3. Define the set X = {0, 1, 2, 3} with the operation specified in Table 5. Equipped with this
operation and the element 0, the structure (X; *, 0) forms a Q-algebra. The directed graph I"(X) corre-
sponding to this algebraic system is illustrated in Figure 3.
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of

Figure 3: The diagraph of Example 5.3.

Remark 5.4. Let I'(X) be a digraph of Z , then the following are true:

o Ifnisodd, then every vertex has only one indegree and one outdegree.
o If n 1s even, then every odd vertex has only one outdegree and zero indegree, but every even
vertex has two indegree and one outdegree.

The main structural property of the Q-digraph associated with L, reveals a tree-like organiza-
tion important for understanding connectivity and acyclicity in these graphs. In the following results,
we investigate these properties.

Theorem 5.5. Let I'(Z,) be a digraphs of Z,. Then F(Z(4 ) ] is a tree digraph, for all n>1.

Proof. We use mathamtical induction. For n =1, then I” (Zu'ﬂ )=1(Z,), s a tree digraph. Suppose that
it is true for n = k, means that F(Z“k_1 )is tree digraph. Now forn =k + 1, we get (Z“n ) = (Z“kﬂ_] ) =Z,
In I (Zuk) we have one vertex in bottom from the digraph of degree one and the other vertices in
the middle of digree three until in the top of the digraph all 2.2*! vertices of degree one which are

V= {vl,vz,...,v } and 4.2 =2. (4.2"") and by adding 4.2* vertices which are {ul,uz,...,u4 Z,H} then

2.9k1

U ={u1,u2,...,u u U } We see that in the digraph of I” (Z“,H), the number of vertices

2.9k g gkl 77t Ty gkt
are 4.2 +4.2"" =4.2" and we have for F(Z“k) each two vertices of U are adjacent with only one
vertices of V. Thus by this sequence u, u, adjacent with v, also u,, u, are adjacent with v, and finally

u U, i Are adjancent with U, s then we get that I (Z“k) is tree digraph. Suppose that we have

4.287 1
a cyclic digraphs C=w,,w,,w,,...w, ,w,, which implies that degree (w,)=2 in cyclic. Hence we have
three cases:

Case one: If w, in the bottom of digraph then degree of w, = 3 it is a contradiction.

Case two: If w, € {ul,uz,...um,k1 }, then the degree of w, is 4 <deg(w, ) <5 which is impossible.

Case three: Suppose that we V = {vl,vz,...v2 St }, means that it is in the top of the digraph and 2 <
deg (w) < 3 which is a contradiction. So the digraphs is not cycle. O

Lemma 5.6. The distance in F[Z(“n_l) j from leaf to root is d[F(Z(4 ) D: 2+(n-1)

Proof. We use mathamtical induction. We see that, for n = 1 is true. Then d(F(Z4)) =2=2-(1-1).
Assume that for n = k is also true d(F(Z“H))=2+(k—1). For n = k + 1, we must show that

d(F(Z“k )) =2+ (k). In (F(Zuk )) we have one vertex in bottom from the digraph of degree one and
the other verteces are in the middle of digree three. However, in the top of the digraph all 2.2%!
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vertices of degree one. Now, V :{vl,vz,...,v2 Z,H} and 4.2" =2. (4.2*") and by adding 4.2*" vertices
. ,uzlz,eflﬂ,...,u“kfl}. On the other hand, the digraph

of I'(Z, ,.), then the number of vertices are 4.2 442 =4.2" In Z, . we have each two vertices of

which are {ul,uQ,...,u“kfl} then U={u,,u,,...,u

U are adjacent with only one vertice of V by this sequence u,, u, adjacent with v, also u,, u, are adja-
4.2k

cent with v,. Finally U, o oUW, o AT adjancent with U, i1 SO We get d(F(Z )) =2+(k-1)+1=2+F.

Example 5.7. Let (Zn;—,O) be the @- algebra with subtraction taken modulo n. the diagraph of this
Q- algebra is shown in Figures 4 and 5 for n = 4,5,20.

The digraph of Z_20

digraph of Z 4 digraph of Z_5

Figure 4: The diagraph of 7'(Z,) and I'(Z,). Figure 5: The diagraph of I'(Z,,)

Theorem 5.8. Let G = I'(Z,) a digraphs of (Zn;—,O) . If G is disconnected, then every components that
contain a vertex has Arc with 0 vertex, is sub Q- algebra. The set of components that has Arc with 0

is %: a, if a is odd then G, ={0,a,2a,3a,...ra =n}, where re N. If a is even then we keep dividing the
result by 2 until we get odd number.

Proof. Suppose that G is disconnected digraph of /(Z,) and assume G, is the components that has Arc
with 0 vertex. So O€ G, # J, we most prove that (x —y)—ze G, for all x,y,z€ G,, since x =ra,y =r,a,
and z = ra, where r,r,,n,€ N, then (x-y)-z=(na-na)-na=(r-n)a-rna=((n-n)-r)aecG,.
Thus G, is a sub @- algebra. O

Example 5.9. Let (Z,;-,0),(Z4;—,0),(Z,;;—,0) are a Q— algebras. The digraphs of them are presented
in Figure 6.

The digraphs of Z_16

digraphof Z_4 digraph of Z 8

Figure 6: The diagraph of I'(Z,),I(Z,) and I'(Z,,)
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If we see that the digraphs are tree digraph and the distance of I"| Z (1) j is d(]" (Z (12 D: 2+,
(n—-1) and hence d(I'(Z,))=2,d(I"(Z,))=3, and d(I'(Z,,))=4.

Example 5.10. Let G=1(Z,,) be a digraphs of the @— algebra (Z,,;—,0).

129

digraph of Z_12

Figure 7: The diagraph of I'(Z,,)

Then the digraph of G is disconnected and its vertex set splits into two connected components
V(G) =10, 3, 6, 9} and V(G) =11, 2, 4, 5, 7, 8. 10, 11}. In particular, G, corresopnds to the set of mul-
tiples of 3 in Z,,, and by Theorem 5.8 G, determines a sub @— algebra of (Z,,;-,0).

12°

Theorem 5.11. The Q- digraph of I'(Z,) is regular if and only if n is odd and connected.

Proof. Suppose that @— digraph of 7'(Z,) is regular then out-degree = in-degree so by Remark 5.4. n is
odd and connected. Conversely, Suppose that the @- digraph of 7°(Z,), n is odd and connected, then
by Remark 5.4. for every ve I'(Z,) the degree of vertex v is d (v) =d’(v) =1. Thus the @- digraph of

I'(Z,) is regular. O
Remark 5.12. A Q- digraph of I” (ZMH) with 4.2" vertices contains (4.2"1)-1 directed edge.
Theorem 5.13. The Q- digraph of F(Z“H) is anti - arborescence.

Proof. By Theorem 5.5. The @- digraph of /°(Z_ ) is in - tree and for every vertex ve Z  ,, there
is exactly one unique directed path from v to the root 0. Thus the - digraph of I (Z“m1 ) is anti -
arborescence. ‘ O

6. Discussion

The characterization of Von-Neumann regular elements in Z  as well as the tree and anti-arbores-
cence structure of the associated Q-digraphs provides insight into the algebraic and combinatorial
interplay in Q-algebras. This highlights the potential to apply these methods to study regularity
phenomena in more general algebraic systems. Our results focus primarily on the Q-algebra Z  and
its associated Q-digraphs. Extending these characterizations to infinite Q-algebras or other classes of
non-commutative Q-algebras remains an open challenge. Future work could extend these construc-
tions to other algebraic structures related to Q-algebras, such as BCK- or BCH-algebras, or explore
applications in algebraic graph theory and categorical frameworks.

7. Conclusion

This paper extends Von-Neumann regularity concepts to Q-algebras, defining Q-digraphs capturing
their algebraic structure. It characterizes regular elements in Z, and reveals that Q-digraphs of z,,

n—1
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form tree-like structures. This unifies and generalizes previous algebraic graph theories for BCK-,
BCI-, and ring-based graphs. The results deepen connections between algebra and directed graph
theory, opening paths for broader algebraic and combinatorial studies.
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