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Abstract
This study presents the notions of Von-Neumann regular Q-algebra and Q-digraph. Given a Q-algebra 
X, the corresponding graph, indicated by ( )G  , is a directed graph with vertices that correspond to 
elements of X. For two different elements a, b ∈ X, an Arc from a to b (written as a → b) exists if and 
only if a ∆ b = 0, where a ∆ b = (b ∗ a) ∗ a. We elaborate these ideas and offer examples. The paper 
also, analyze the Q-algebra ( )n ; ,0-�  and indicates that it is a left Von-Neumann regular Q-algebra. 
In addition, features of the Q-digraph corresponding to the Q-algebra ( )n ; ,0-�  will be examined. The 
main conclusion of this research is that the digraph linked. The principal finding of this paper will 
shed light on the digraph associated with ( )14.2n-�  forms a tree digraph for all n ≥ 1.
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1. Introduction

BCK-algebra and BCI-algebra are two abstract algebraic structures that were presented by Imai 
and Is´eki [7,8]. The BCK-algebra class is closely related to the broader BCI-algebra class, as is well 
known. The BCH-algebra, which includes the BCI-algebra, was suggested by Hu and Li [9]. D-algebra 
was created by Neggers and Kim [10] and is defined as follows:

i.	 * ,ea a =
ii.	 * ,e ea =
iii.	If *  and * ,  then .e ea b b a a b= = =
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This idea serves as a substantial extension of BCK-algebra. Researchers have explored multiple 
links between d-algebra and BCK-algebra, as well as examined how these structures relate to ori-
ented digraphs. Meanwhile, Jun, Roh, and Kim [6] presented the concept of BH-algebra as follows:

i.	 * ,ea a =
ii.	 * ;ea a=
iii.	If *  and * ,  then .e ea b b a a b= = =  
The BH-algebra structure broadens the scope of BCH, BCI, and BCK-algebras. It has been estab-

lished that a maximal ideal exists within bounded BH-algebras. The concept of Q-algebra, introduced 
by Neggers, Ahn, and Kim, offers a further generalization encompassing BCH, BCI, and BCK-algebras, 
and also generalizes certain theorems known from BCI-algebra theory. In addition, their introduction 
of “quadratic” Q-algebras led to the proof that every quadratic Q-algebra (A ; e), where e XÎ , can be 
expressed as * ea b a b= - + , where , Aa b Î  and A represents a field with 3A ³ , thus revealing a 
specific linear characteristic in the product.

In [11], Taloukolaei and Sahebi presented the idea of the Von Neumann regular graph made from a 
ring.  They designated the related Von Neumann regular graph as ( )

Vnr
G R+  and defined Vnr(R) as the 

collection of all regular elements inside R. Two vertices are linked exactly when their total is a regular 
element in R. The vertices of this graph correspond to elements of R. Their study focused on funda-
mental characteristics of this graph, such as its diameter, connectedness, planarity, and girth. Using 
Vizing’s theorem, they classified the Von Neumann regular graph as a first-class graph. In related work, 
Jun and Lee [12] defined graphs associated with CK-algebras and BCI-algebras. For a CK-algebra 
or BCI-algebra A, the graph ( )AG  has vertices representing elements of A, with adjacency between 
vertices a and b determined by the condition l(a, b) = 0, where ( ) { : * 0 for all }l A h A h h h A¢ ¢= Î = Î . 
They provided several characterizations of these graphs, including the fact that ( )AG  is con-
nected when A is a BCI-algebra, and that every other nonzero vertex is adjacent to the vertex 0. 
Furthermore, graphs related to KU-algebras and UP-algebras were introduced in [5,6]. For A being 
either a UP-algebra or KU-algebra, the graph G(A) is defined with vertices as elements of A, where 
two vertices a and b are adjacent if a ∆ b = 0, where a ∆ b = (b ∗ a) ∗ b. These studies presented 
numerous properties and characterizations of such graphs. Notably, in both cases, the diameter sat-
isfies diam( ( )) 3G A £ , and the graph is connected. Moreover, if A and V are two such algebras and 

( ) ( )G A G V@ , then their equivalence class graphs also satisfy ( ) ( )E EG A G V@ , where GE(A) denotes the 
graph formed by the equivalence classes of A. The current work extends these ideas to Q-algebras, 
a generalization that incorporates BCH, BCI, and BCK-algebras among others. The directed graphs 
(Q-digraphs) associated with Q-algebras have vertices as elements with arcs defined by a zero opera-
tion condition reflecting the Q-algebra structure. The manuscript shows that these digraphs capture 
finer structural features such as tree and anti-arborescence forms for specific classes ( )14.2n-� . This 
provides a broad unifying framework for understanding algebraic regularity and relational graph 
structures beyond previous specific algebra classes.

Building on existing research, this study extends the notion of Von Neumann regular elements from 
ring theory to the framework of Q-algebras. Additionally, we introduce the new concept of Q-graphs. 
Let (X; *, 0) be a Q-algebra. An element a ∈ X is called a left Von Neumann regular element if there 
exists some b ∈ X satisfying the condition a = (a * b) * a. Similarly, a is termed a right Von Neumann 
regular element if there exists b ∈ X such that a = a * (b * a). In both cases, the element b is referred to 
as a Von Neumann inverse of a. An element a in a Q-algebra (X, *, 0) is Von Neumann regular if there 
exists b ∈ X simultaneously satisfying the equations a = (a * b) * a and a = a * (b * a). A Q-algebra is 
called left (respectively right) Von Neumann regular when all its elements satisfy the first (respec-
tively second) equation, and is fully Von Neumann regular when both conditions hold throughout. We 
associate to any Q-algebra X a directed graph ( )XG  whose vertex set is X itself, with directed edges 
x y®  between distinct elements existing precisely when (y * x) * x = 0. This work investigates the 
characterization of Von Neumann regular elements in the Q-algebras n�  for selected integers n, along 
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with the structural properties of their corresponding digraphs ( )nG � . In Section 3, Our study exam-
ines three key aspects of Q-algebra structures. First, we analyze the modular arithmetic properties 
of ( )n ; ,0-� , where the congruence relation (( ) ( ) ( )) 0 (mod )n k n i n j n- - - - - º  holds for sequential 
indices j = 1,2,3,... until termination when {0,1}n k- Î , with i = j + 1 and k = i + j. Next, we charac-
terize the regularity properties, proving that ( )n ; ,0-�  constitutes a left-regular Q-algebra under the 
Von Neumann criterion. Finally, we explore associated digraph structures, showing that for ( )nG �  
representing n� , the specific case 14 2n-×

�  always produces an arborescence for 1n ³ . In disconnected 
cases, components containing vertices adjacent to 0 form subalgebras, with exactly n/2 such compo-
nents existing. These exhibit distinct patterns based on parity: forming arithmetic progressions when 
odd, or requiring successive halving until oddness when even. 

2. Preliminaries

This section provides fundamental definitions and associated concepts.

Definition 2.1: A nonempty set X, a distinct element 0, and a binary operation “*” on X that meets 
the following requirements constitute a Q-algebra:

	● For every element x in X, applying “*” to x with itself yields 0,
	● For any x in X, the operation of x with 0 returns x,
	● The operation satisfies a modified associativity: for all x, y, z in X, the equality (x * y) * z = (x * z) * y 

holds.

Declaring x y£  precisely when x * y = 0 allows us to construct a partial order ≤ on X.

Example 2.2. Consider the set of all integers � equipped with binary subtraction and zero element. 
The triple ( , ,0)-� , where “–” denotes the standard integer subtraction operation and 0 represents the 
additive identity, naturally forms a Q-algebra structure. This construction emerges from interpreting 
the subtraction operation as the fundamental binary relation and zero as the nullary operation sat-
isfying the Q-algebra axioms.

Example 2.3. Examine the next table, which defines the operation “*” on the finite set X = {0, 1, 2, 3}:

* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 3 3 0

Table 1: Operation table for Example 2.3

One can easily confirm that the structure (X; *, 0) adheres to the defining axioms of a Q-algebra.

Definition 2.4. For a given Q-algebra (X; *, 0), a non-empty subset XÍ  constitutes an ideal if it 
satisfies:

(1)	The zero element belongs to  , i.e., Î0  ,
(2)	For all elements a, b ∈ X, the membership a * b ∈   combined with b ∈   implies a ∈  .

Example 2.5. Within the Q-algebra (�12; –, 0), the set   = {0, 4, 8} forms an ideal.

Definition 2.6: An element x of a ring  exhibits Von Neumann regularity if there exists y ∈  such 
that x = xyx. When this property holds for every element of , we say  is a Von Neumann regular 
ring.
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Corollary 2.7. For a regular element a in n� , the element ( ) 1naj -  acts as a Von Neumann inverse of a 
in n� . In particular,

( )1 ( ) 1 mod .na a nj- -º

A directed graph, often called a digraph, G is composed of three fundamental parts: a set of verti-
ces V = r1, r2, ..., a collection of edges E = t1, t2, ..., and a function ψ which maps each edge to a specific 
ordered pair of vertices (ri, rj). In graphical terms, vertices appear as points, and edges are shown 
as arrows pointing from vertex ri toward vertex rj. For example, Figure 1 illustrates a digraph that 
includes five vertices connected by ten edges. Another term used for digraphs is oriented graphs.

Figure 1: The digraph containing five vertices and ten edges.

In a directed graph, or digraph, each edge has a direction, meaning it originates from one vertex 
and points toward another. The vertex ri from which an edge tk starts is called the initial vertex of tk, 
while the vertex tj where tk ends is known as the terminal vertex.

The count of edges that emanate from a vertex ri is referred to as its out-degree (also called 
out-valence or outward demidegree), denoted by d+(ri). Conversely, the number of edges that arrive at 
ri is called its in-degree (also known as invalence or inward demidegree), denoted by d–(ri). For exam-
ple, in Figure 1:

1 1

2 2

5 5

( ) 3 and ( ) 1,
( ) 1 and ( ) 2,
( ) 4 and ( ) 0.

d r d r
d r d r
d r d r

+ -

+ -

+ -

= =

= =

= =

It is a fundamental property of digraphs that the total sum of all vertices’ out-degrees equals 
the total sum of all in-degrees. Both sums correspond to the total number of edges in the digraph, 
expressed mathematically as:

( ) ( )
1 1

.
n n

i i
i i

d r d r+ -

= =

=å å
A vertex is called isolated if it has no incoming or outgoing edges, meaning both its in-degree and 

out-degree are zero. A vertex r is termed pendant if the sum of its in-degree and out-degree equals 
one, that is,

( ) ( ) 1.d r d r+ -+ =

Definition 2.8. [13] A tree digraph is a directed graph that is connected and free from any form of 
cycles, meaning it does not contain directed cycles or semicircuits. For a tree digraph with n vertices, 
the number of edges is always exactly n – 1.
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3. Some properties of �n as a Q-algebra

This section delves into the characteristics of a specific type of Q-algebra, exploring examples, theo-
rems, and definitions to understand its properties.

Example 3.1. Suppose that n�  is the set of integers modulo n. Then ( )n ; ,0-�  form a Q-algebra.

The following theorem establishes essential modular arithmetic relations in the Q-algebra n� , 
which form the foundational structure for later results on Von-Neumann regularity

Theorem 3.2. Let  ( )n ; ,0-�  be -Q  algebra with subtraction taken modulo n. For integers p, r, t satis-
fying r = t + 1 and p = r + t, we have ((n – p) – (n – r) – (n – t)) mod n = 0. Stop the process when (n – p) 
∈ {0, 1}.

Proof. By mathematical indication. First step: suppose that t = 1. Then
- - - - -

= - - + - + = - =
(( 3) ( 2) ( 1))mod

( 3 2 1)mod mod 0
n n n n

n n n n n n

So, it is true for t = 1. Second step: Asume that it is true for t = y. Then Then ((n – p) – (n – r) – (n – y)) 
mod n = 0. Where  r = y + 1 and p = r + t . y = 1, 2, 3 ... (n – p) = 0 or 1 . We need to prove for w + 1. 
Then ((n – p) – (n – r) – (n – (y + 1))) mod n = (n – 2y – 3 – n + y + 2 – n + y + 1) mod n = –n mod n = 0.

� 

Example 3.3. Let (�10; –, 0) be a Q– algebra. Then by Theorem 3.2:
- - = - =
- - = - =
- - = - =
- - = - =

(7 8 9)mod10 10mod10 0
(5 7 8)mod10 10mod10 0
(3 6 7)mod10 10mod10 0
(1 5 6)mod10 10mod10 0

Example 3.4. Let (�11; –, 0) be a Q - algebra. Then by Theorem 3.2 we have

- - = - =
- - = - =
- - = - =
- - = - =
- - = - =

(8 9 10)mod11 11mod11 0
(6 8 9)mod11 11mod11 0
(4 7 8)mod11 11mod11 0
(2 6 7)mod11 11mod11 0
(0 5 6)mod11 11mod11 0

Corollary 3.5. Consider the Q-algebra ( )n ; ,0-� . Then the number of ((n – p) – (n – r) – (n – t)) mod n 

= 0 in n�  is -1
2

n , if n is odd and is - 2
2

n , if n is even.

Corollary 3.6. Consider the ( )Q algebra ; ,0n- -� . Then (( ) ( ) ( ))mod 0n t n r n p n- + - + - =  where t = 1, 
2, 3, ....(n – p) = 0 or 1, r = t + 1 and p = r + t.

Definition 3.7. Suppose that (X; *, 0) is a -�  algebra and Y XÆ ¹ Í , then (Y ; *, 0) is a sub -�  alge-
bra, if (Y ; *, 0) is -�  algebra.

Example 3.8. Let (�12; –, 0) be the -�  algebra with subtraction taken modulo 12. the set Y =  
{0,2,4,6,8,10} is a sub -�  algebra of (�12; –, 0).

In the following result we give a characteraization of sub -�  algebra
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Theorem 3.9. Let (X ; *, 0) be Q - algebra and let S XÆ ¹ Í . Then (S ; *, 0) is a sub Q - algebra of X 
if and only if the following conditions are satisfied:

a)	 0 ∈ S,
b)	 (x * y) * z ∈ S for all x, y, z ∈ S.

Proof. Suppose that S is a sub Q - algebra, then imples 0 ∈ S, then (x * y) * z = (x * y) * z, so (x * y) * 
z ∈ S.

Coversely, assume that ,  0  and ( * ) *S X S x y z SÍ Î Î . Let x, y, z ∈ S, then we get x * x = 0 and  
x * 0 = x for all x. Since (x * y) * z = (x * y) * y ∈ S. So (S ; *, 0 ) is a sub Q - algebra of X.� 

Theorem 3.10. Let (X1; –, 0) and (X1; –, 0) be two sub Q– algebras of a Q-algebra ( )n ; ,0-� . Then the 
intersection of X1 and X2 also is sub Q - algebra.

Proof. Suppose that X1 and X2 are sub Q- algebra of n� . So 1 20 X XÎ Ç ¹ Æ. Let 1 2, ,x y z X XÇÎ . So 
x, y, z ∈ X1 and x, y, z ∈ X2. Since X1 and X2 are sub Q– algebra, so (x – y) – z 1 2X XÎ Ç . Therefore 
( )1 2 ; ,0X XÇ -  is a sub Q– algebra.� 

Example 3.11. Let X1 = {0, 4, 8} and X1 = {0, 2, 4, 6, 8, 10} be two sub Q– algebra of (�12; –, 0). Then 
1 2X XÇ  is sub Q– algebra of a Q– algebra (�12; –, 0).

Theorem 3.12. Union of two Sub Q-algebra is not necessarily a sub Q-algebra. Let ( )n ; ,0-�  be a Q- 
algebra, and let X1 and X2 be two sub Q-algebras of n� . The union 1 2X XÈ  of these two sub Q- algebras 
is a sub Q- algebra of n�  if 1 2 2 1.or  X X X XÍ Í

Proof. Suppose 1 2X XÍ . Then 1 2 2X X XÈ = , which is a sub Q– algebra of n� . Similary, if 2 1X XÍ . Then 
1 2 1X X XÈ = , which is a sub Q- algebra of n� .� 

Example 3.13. Let 1 2{0,4,8} and {0,3,6,9}X X= =  be two sub Q– algebra of (�12; –, 0). Then 1 2X XÈ  
is not sub Q– algebra of a Q– algebra (�12; –, 0). Since 1 2 {0,3,4,6,8,9}X XÈ = , but 1 2(0 3) 4 7mod12 5 X X- - = - = Ï È

1 2(0 3) 4 7mod12 5 X X- - = - = Ï È . Since 1 2X XÍ . Then 1 2 2X X XÈ =  is a sub Q– algebra of a Q– algebra Z12.

Definition 3.14. Consider two Q-algebras, 1 1 2 2( ;* ,0) and ( ;* ,0)X X . The product of X1 and X2, denoted 
as X1 × X2, is defined as the set of all ordered pairs (x1, x2) where x1 is an element of x1 and x2 is an 
element of X2. This set is equipped with the operation defined by: 1 2 1 2 1 1 2 2( , ) * ( , ) ( * 1, * 2)x x y y x y x y= .

Example 3.15. Let 3 4( ; ,0) and ( ; ,0)Z- -�  are Q– algebra. Then 3 4( ; ,0)´ -� �  is Q– algebra. 

4. Von Neumonn regular Q– algebra

In this section ,we define Von- Neumonn regular element for Q– algebra and left (right) Von-Neumonn 
regular Q– algebra.

Definition 4.1. Let (X ; *, 0) be a Q-algebra  and let a XÎ . The element a is called left Von Neumonn 
regular element if there exist an element w in X such that a = (a * w) * a. Similarly, a is called right 
Von-Neumonn regular element if there exist an element w in X such that a = a * (w * a). Any such 
w is called a Von Neumonn inverse of a. If  there exists w in X such that a = (a * w) * a = a * (w * a), 
then a is a Von-Neumonn regular element in X. The Q– algebra X is said to be left (respectively right) 
Von-Neumonn regular if every element of X is left (respectively right) Von Neumonn regular. If X is 
both left and  right Von Neumonn regular, thenit is called Von Neumonn regular Q– algebra.

Example 4.2. Consider the finite set X = {0,1,2,3} and “*” is an operation defined in X as the following 
table:
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* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 3 3 0

Table 2: The operation for Example 4.2.

Then it is easy to show that (X; *, 0) form a Q– algebra. The left Von-Neumonn regular element in 
(X; *, 0) is only zero element, but right Von-Neumonn regular element is all the set X.

Example 4.3. Consider the finite set X = {0,1,2} and “*” is an operation defined in X as the following 
table:

* 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Table 3: The operation for Example 4.3.

Then again (X; *, 0) form a Q– algebra. The elements of the set X are left and right Von-Neumonn 
regular elements, but X is not Von-Neumonn regular Q– algebra, since (a * w) * a ≠ a *(w * a) for all 
a, w in X.

Remark 4.4. Consider the Q– algebra ( )n ; ,0-� . Then its left Von-Neumonn regular elements are 
{0,1, , 1}n¼ - .

Example 4.5. To show (�5 ; –, 0) is a left Von-Neumonn regular Q– algebra, let

0 ((0 0) 0)mod5 0
1 ((1 4) 1)mod5 4mod5 1
2 ((2 3) 2)mod5 3mod5 2
3 ((3 2) 3)mod5 2mod5 3
4 ((4 1) 4)mod5 1mod5 4.

a
a
a
a
a

= = - - =
= = - - = - =
= = - - = - =
= = - - = - =
= = - - = - =

Corollary 4.6. The Q– algebra ( )n ; ,0-�  is a left Von-Neumonn regular Q– algebra.
The following result identifies explicit Von-Neumann inverses for left regular elements, a key step 

to understanding the fine structure of regular elements in n� .

Theorem 4.7. If a is a left regular element in n� , then (n – a) is a Von-Neumann inverse for a.

Proof. Let a ∈ n�  be a Von Neumann regular element. Then

(( ( )) )mod ( )mod
mod mod mod .

a n a a n n a n
n n a n a n a

- - - = - -
= + = =

� 
Proposition 4.8. Consider that a ∈ n� , and w is a Von-Neumann inverse for a.

Then
a – w = 0

Proof. If w form a Von-Neumann inverse for a. Since by Theorem 4.7. w = n – a. Then a – w = a – n – a =  
a – a – n = –n mod n = 0.� 
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Proposition 4.9. Consider the Q– algebra X. Then we have the following equivalent statements for 
every a in X.

(1)	If a is regular element,
(2)	a = (a * a) * b, where b is Von-Neumann inverse for a.

Proof. (1) ⇒ (2) Let a be a regular element. Then there exist b ∈ X such that a = (a * b) * a = a * (b * a), 
then a = (a * b) * a = (a * a) * b.

(2) ⇒ (1) Suppose that b is Von Neumann inverse for a. Then a = (a * a) * b, we have a = (a * a) * b =  
(a * b) * a. Thus a is Von-Neumann regula element.� 

Corollary 4.10. Consider an element a in ( )n ; ,0-�  that is Von Neumann regular. Then, there is one 
and only one element b in n�  satisfying the conditions (a – b) – a = a and (b – a) – b = b.

5. Digraph of Q– algebra

Definition 5.1. Given a Q– algebra X, its graph ( )G   is defined as a directed graph whose vertices 
correspond to the elements of X. For any two distinct elements x, y ∈ X, there is an arc from x to y 
(denoted x y® ) if and only if the expression x ∆ y equals zero, where x ∆ y is given by (y * x) * x. This 
type of directed graph is known as a Q– digraph.

Example 5.2. Consider the set X = {0, 1, 2} accompanied by the table below:

* 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Table 4: The operation for Example 5.2.

Then (X ; *, 0) is a Q– algebra. The digraph of ( )G   is:

Figure 2: The diagraph for Example 5.2.

* 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 0 0 0
3 3 3 3 0

Table 5: The operation for Example 5.3.

Example 5.3. Define the set X = {0, 1, 2, 3} with the operation specified in Table 5. Equipped with this 
operation and the element 0, the structure (X; *, 0) forms a Q-algebra. The directed graph ( )G   corre-
sponding to this algebraic system is illustrated in Figure 3.
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Figure 3: The diagraph of Example 5.3.

Remark 5.4. Let ( )G   be a digraph of n� , then the following are true:
	● If n is odd, then every vertex has only one indegree and one outdegree.
	● If n is even, then every odd vertex has only one outdegree and zero indegree, but every even 

vertex has two indegree and one outdegree.

The main structural property of the Q-digraph associated with 14.2n-�  reveals a tree-like organiza-
tion important for understanding connectivity and acyclicity in these graphs. In the following results, 
we investigate these properties.

Theorem 5.5. Let ( )nG �  be a digraphs of n� . Then ( )14.2nG -

æ ö
ç ÷è ø
�  is a tree digraph, for all 1n ³ .

Proof. We use mathamtical induction. For n = 1, then 1 44.2
( ) ( )nG G- =� � , is a tree digraph. Suppose that 

it is true for n = k, means that 14.2
( )kG -�  is tree digraph. Now for n = k + 1, we get ( ) ( )1 14.2 4 2 4.2n k k+ -×

= =� � � . 
In 

4.2
( )kG �  we have one vertex in bottom from the digraph of degree one and the other vertices in 

the middle of digree three until in the top of the digraph all 2.2k–1 vertices of degree one which are 
{ }1

1 1
1 2 2.2
, , ,  and 4.2 2. (4.2 )k

k kV v v v -
- -= ¼ =  and by adding 4.2k–1 vertices which are { }11 2 4.2

, , , ku u u -¼  then 

{ }1 1 11 2 2.2 , 2.2 1 4.2
, , , , ,k k kU u u u u u- - -+

= ¼ ¼ . We see that in the digraph of 14.2
( )kG -� , the number of vertices 

are 1 14.2 4.2 4.2k k k- -+ =  and we have for 
4.2

( )kG �  each two vertices of U are adjacent with only one 
vertices of V. Thus by this sequence u1, u2 adjacent with v1 also u3, u4 are adjacent with v1 and finally 

1 14.2 1 4.2
,k ku u- --

 are adjancent with 12.2kv - , then we get that 
4.2

( )kG �  is tree digraph. Suppose that we have 
a cyclic digraphs 1 2 3 1, , , ,mC w w w w w= ¼ , which implies that degree ( )1 2w =  in cyclic. Hence we have 
three cases:

Case one: If w1 in the bottom of digraph then degree of w1 = 3 it is a contradiction.
Case two: If { }11 1 2 2.2

, , kw u u u -Î ¼ , then the degree of ( )1 1is 4 deg 5w w£ £  which is impossible.
Case three: Suppose that { }11 2 2.2

, , kw V v v v -Î = ¼ , means that it is in the top of the digraph and 2 ≤ 
deg (w) ≤ 3 which is a contradiction. So the digraphs is not cycle.� 

Lemma 5.6. The distance in ( )14.2nG -

æ ö
ç ÷è ø
�  from leaf to root is ( )14.2

2 ( 1)nd nG -

æ öæ ö = + -ç ÷ç ÷è øè ø
�

Proof. We use mathamtical induction. We see that, for n = 1 is true. Then ( )( )4 2 2 (1 1)d G = = - -� . 
Assume that for n = k is also true ( )( )14.2

2 ( 1)kd kG - = + -� . For n = k + 1, we must show that 

( )( )4.2
2 ( )kd kG = +� . In ( )( )4.2kG �  we have one vertex in bottom from the digraph of degree one and 

the other verteces are in the middle of digree three. However, in the top of the digraph all 2.2k–1 
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vertices of degree one. Now, { }11 2 2.2
, , , kV v v v -= ¼  and 14.2 2. (4.2 )k k-=  and by adding 4.2k–1 vertices 

which are { }11 2 4.2
, , , ku u u -¼  then { }1 1 11 2 2.2 2.2 1 4.2

, , , , , ,k k kU u u u u u- - -+
= ¼ ¼ . On the other hand, the digraph 

of 14.2
( )kG -� , then the number of vertices are 1 14.2 4.2 4.2k k k- -+ = . In 

4.2k�  we have each two vertices of 
U are adjacent with only one vertice of V by this sequence u1, u2 adjacent with v1 also u3, u4 are adja-
cent with v2. Finally 1 14.2 1 4.2

,k ku u- --
 are adjancent with 12.2kv - , so we get ( )( )4.2

2 ( 1) 1 2kd k kG = + - + = +� .

Example 5.7. Let ( )n ; ,0-�  be the Q- algebra with subtraction taken modulo n. the diagraph of this 
Q- algebra is shown  in Figures 4 and 5 for n = 4,5,20.

Figure 4: The diagraph of 4 5( ) and ( )G G� � . Figure 5: The diagraph of 20( )G �

Theorem 5.8. Let ( )nG G= �  a digraphs of ( )n ; ,0-� . If G is disconnected, then every components that 
contain a vertex has Arc with 0 vertex, is sub Q- algebra. The set of components that has Arc with 0 
is 

2
n a= , if a is odd then 1 {0, ,2 ,3 , }G a a a ra n= ¼ = , where r NÎ . If a is even then we keep dividing the 

result by 2 until we get odd number.

Proof. Suppose that G is disconnected digraph of ( )nG �  and assume G1 is the components that has Arc 
with 0 vertex. So 10 GÎ ¹ Æ, we most prove that 1( )x y z G- - Î  for all 1, ,x y z GÎ , since 1 2,x r a y r a= = , 
and z = r3a, where 1 2 3, ,r r r NÎ , then ( ) ( ) ( )( )1 2 3 1 2 3 1 2 3 1( )x y z r a r a r a r r a r a r r r a G- - = - - = - - = - - Î . 
Thus G1 is a sub Q- algebra.� 

Example 5.9. Let ( ) ( ) ( )4 8 16; ,0 , ; ,0 , ; ,0- - -� � �  are a Q– algebras. The digraphs of them are presented 
in Figure 6.

Figure 6: The diagraph of 4 8 16( ), ( ) and ( )G G G� � �
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If we see that the digraphs are tree digraph and the distance of ( )14.2nG -

æ ö
ç ÷è ø
�  is ( )14.2

2 ( 1)nd nG -

æ öæ ö = + -ç ÷ç ÷è øè ø
� , 

( )14.2
2 ( 1)nd nG -

æ öæ ö = + -ç ÷ç ÷è øè ø
�  and hence ( ) ( )4 8( ) 2, ( 3)d dG G= =� � , and ( )16( 4)d G =� .

Example 5.10. Let 12( )G G= �  be a digraphs of the Q– algebra 12( ; ,0)-� .

Figure 7: The diagraph of 12( )G �

 Then the digraph of G is disconnected and its vertex set splits into two connected components 
V(G1) = {0, 3, 6, 9} and V(G2) = {1, 2, 4, 5, 7, 8. 10, 11}. In particular, G1 corresopnds to the set of mul-
tiples of 3 in �12, and by Theorem 5.8 G1 determines a sub Q– algebra of 12( ; ,0)-� .

Theorem  5.11. The Q– digraph of ( )nG �  is regular if and only if n is odd and connected.

Proof. Suppose that Q– digraph of ( )nG �  is regular then out-degree = in-degree so by Remark 5.4. n is 
odd and connected. Conversely, Suppose that the Q– digraph of ( )nG � , n is odd and connected, then 
by Remark 5.4.  for every ( )nv GÎ �  the degree of vertex  is ( ) ( ) 1v d v d v- += = . Thus the Q– digraph of 

( )nG �  is regular.� 

Remark 5.12. A Q– digraph of 14.2
( )nG -�  with 4.2n–1 vertices contains (4.2n–1)-1 directed edge.

Theorem 5.13. The Q– digraph of 14.2
( )nG -�  is anti - arborescence.

Proof. By Theorem 5.5. The Q– digraph of 14.2
( )nG -�  is in - tree and for every vertex 14.2nv Z -Î , there 

is exactly one unique directed path from v to the root 0. Thus the Q- digraph of 14.2
( )nG -�  is anti - 

arborescence.� 

6. Discussion

The characterization of Von-Neumann regular elements in n�  as well as the tree and anti-arbores-
cence structure of the associated Q-digraphs provides insight into the algebraic and combinatorial 
interplay in Q-algebras. This highlights the potential to apply these methods to study regularity 
phenomena in more general algebraic systems. Our results focus primarily on the Q-algebra n�  and 
its associated Q-digraphs. Extending these characterizations to infinite Q-algebras or other classes of 
non-commutative Q-algebras remains an open challenge. Future work could extend these construc-
tions to other algebraic structures related to Q-algebras, such as BCK- or BCH-algebras, or explore 
applications in algebraic graph theory and categorical frameworks.

7. Conclusion

This paper extends Von-Neumann regularity concepts to Q-algebras, defining Q-digraphs capturing 
their algebraic structure. It characterizes regular elements in n�  and reveals that Q-digraphs of 14.2n-�  
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form tree-like structures. This unifies and generalizes previous algebraic graph theories for BCK-, 
BCI-, and ring-based graphs. The results deepen connections between algebra and directed graph 
theory, opening paths for broader algebraic and combinatorial studies.
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