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Abstract

In this paper, a comparative analysis of Particle Swarm Optimization (PSO), Grey Wolf Optimiza-
tion (GWO), and a hybrid PSO-GWO algorithm for the solution of complex optimization problems
have been presented. The hybrid algorithm consists of the exploitation strength of GWO and the
exploration capabilities of PSO while combining both together to surmount the failure of standalone
algorithms like slow convergence in GWO and premature convergence in the PSO. The algorithms
were evaluated in terms of convergence speed, robustness, and accuracy, on a series of benchmark
functions (Sphere, Rastrigin, Ackley, Rosenbrock, and Griewank). The results of simulations indicate
that the notion of a hybrid PSO-GWO algorithm is always better compared to standalone PSO as well
as GWO for lower mean square errors (MSE) and quicker convergence to global optimum for different
optimization landscapes. Finally, the hybrid approach took advantage of the best in all three aspects
to optimize multimodal, non-convex, and deceptive functions with both reliable and robust perfor-
mance that was superior to that of local minimum avoidance algorithms. This research shows that
the hybrid PSO-GWO algorithm is an efficient tool for robust optimization in the real-world systems
of dynamic, complex systems. Future work is to extend the algorithm’s adaptability to real-world
constraints, and dynamic parameter adjustment, and integrate it within domain-specific heuristics to
improve the optimization in engineering and automation tasks.
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1. Introduction

Certainly, one of the most daunting tasks in control systems engineering is the optimization of system
performance to achieve desired dynamic behaviour. The importance of this is particularly important
in systems with complex dynamics and nonlinear constraints [1]. Control parameters such as damp-
ing ratio and natural frequency must be optimized for certain outcomes of interest, namely, minimum
overshoot, fast settling time and robust stability under a variety of conditions [2]. As these complex
tasks are inadequately treated with conventional approaches, we need an advanced metaheuristic
algorithm [3]. Natural and social phenomena inspired metaheuristic algorithms that have gained
popularity for optimization tasks, particularly those that come equipped with nonconvexity, high
dimensionality, and multiplicity [4]. These two algorithms belong to the category of the prominent
known algorithms Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) [5, 6].
Exploration is complemented with exploitation by the use of Particle swarm optimization (PSO), which
considers the social behaviour of the particles in the search of the space and repeatedly leads them
to their nearest neighbours, thereby making them to converge to optimum solutions [7]. However,
unlike Babu’s algorithm, GWO exploits patch generation, searching with an adaptive exploration and
solution refinement inspired by leaders [8, 9].

Further integration of such optimization techniques and algorithms within the intelligent con-
trol systems may be more effectively achieved through artificial intelligence-inspired adaptive deci-
sion-making frameworks [10]. The structure of such a system starts with the user activity being
recorded and logged, then processed in a Data Preprocessing module [11]. It takes the data from raw
format to structured format; this generates training, validation and test datasets or real-time data
records. The pattern learnt predictions of the data is sent to a Classifying Module for prediction of out-
comes and an RL Module tries to find the best action by using predictive insights and service-related
information. As shown in Figure 1, dynamic control and adaptation require an Actuator to perform
the determined actions to complete the feedback loop. By this, the synergy between metaheuristic
optimization and artificial intelligence is underlined forming this multi-layer architecture for intel-
ligent systems to deal with complex dynamic behaviours and constraints of control engineering and
multimedia services [12, 13].

Eventually, PSO and GWO are powerful optimization techniques independently, but when used
independently, tend to show the weakest points of the methods in achieving a tradeoff between con-
vergence speed and solution quality [14, 15]. Hybrid optimization approaches that combine strengths
among more than one algorithm have recently become an attractive alternative [16]. The conver-
gence of hybrid PSO-GWO will be enhanced with the optimal features of PSO and GWO, in regard

User activity
Record

Training,
validation and

Log test
datasets/current

i record L
Data Preprocessing Classifying Module
Prediction
Services info Action
RL Module — Actuator

Figure 1: Illustration for the generic diagram of the intelligent systems.



Al-zamili J.J, Results in Nonlinear Anal. 8 (2025), 133-147. 135

to exploration and exploitation, respectively, to make it more accurate and robust [17]. This research
analyzes the performance of PSO, GWO, and Hybrid PSO GWO algorithms in terms of achieving
the optimal value of damping ratio ({) for the second-on-order control system. The goal is to main-
tain the system characteristics (overshoot and settling time) near the desired values. The algorithms
are tested for convergence, mean square error, and robustness through simulations using MATLAB,
many times, and through simulations in these multiple runs. The current study therefore stresses the
benefits of hybrid methods in tackling complex problems of optimization and illustrates the feasibility
of such methods for the design of advanced control systems.

The remainder of this paper is organized as follows: The second section presents a literature survey
of previous work and the theoretical background. The third describes the proposed methodology,
which describes the foundation and the approach of the combined PSO and GWO. In the fourth sec-
tion, the model setup and methodology are explained, including the configuration of the PSO, GWO
and Hybrid PSO-GWO algorithms as well as the simulation environment. In the next section, the
sixth section, the hybrid optimization process is elaborated upon, showing the combination of PSO
and GWO techniques used, and the key steps of their hybridization. In Section 6 we introduce used
benchmark functions to test the performance of the algorithms. In the seventh section, the results of
a comparative analysis of the performance of PSO, GWO, and the Hybrid PSO-GWO algorithm are
carried out. Finally, the eighth section concludes the paper by summarizing the findings, concluding
key contributions.

2. Literature Survey

The solving of multi-constrained and global optimisation problems in heterogeneous applications
relies on optimisation algorithms. There have been recent studies that report the growing use of
hybrid approaches, combining the strength of several algorithms to achieve better and/or better solu-
tions as well as higher performances. The relevant works to this study are reviewed, with the devel-
opments in hybrid optimisation techniques and their applications.

In this paper, the authors have investigated the hybrid Genetic Algorithm-PSO approach, called
GPSO, which is proposed to solve multi-constrained optimization problems. This research represents
the hybrid model by combining the exploration capabilities of Genetic Algorithms with the exploita-
tion efficiency of the PSO, thus yielding significantly better results compared to conventional methods
in solving complex optimization tasks [18]. The authors in [19] also make a further contribution in
presenting various combinations of swarm-based algorithms, namely, the Crow Search Algorithm
(CSA), GWO, Harris Hawks Optimisation (HHO), and Whale Optimization Algorithm (WOA). They
were shown that hybrid methods, in this case CSA-GWO, are more effective than their base coun-
terparts in terms of the optimisation efficiency and robustness [20]. Recent research has centred on
advancements in GWO methods. The Advanced GWO (AGWO) has performed better in power dis-
tribution system planning than standard GWO and PSO. Using this improved algorithm, optimized
voltage profiles, lowered power losses and reduced emission costs, offer great benefits to the power
plant developers and are therefore a very valuable tool for developing efficient and sustainable power
systems [21]. The authors of this study also present a multi-strategy ensemble GWO algorithm which
integrates several advanced optimization techniques, furthering its performance. Combined across
several strategies, the algorithm was found to converge accurately, speed up computation, and address
the problem of local optima. Where problems and changes are most difficult and diverse, for exam-
ple in robot path planning, precision, adaptability and efficiency are vital with such enhancements.
To begin with, it describes the applicability of hybrid GWO models in solving problems in robotics
and engineering in general in general, as well as the relisation of this potential in three real-world
problems in robotics [22]. An innovative expansion of the framework demonstrated here is the devel-
opment of a self-learning variant of GWO, the Adaptive Dynamic Self Learning GWO (ASGWO) and
self-learning variant. In addition, this superior algorithm learns time-sensitive learning approaches
to address the rivalry of the converging speed and local optima issues. The improvements make it
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possible for ASGWO to deliver high reliabilities in performance with the complex global optimization
and other engineering applications [23]. Moreover, there is also existence of using hybrid strategies
on less popular algorithms, namely, Golden Jackal Optimization (GJO); among others. It is worth
emphasizing that the implementation of hybridization in GJO leads to a substantial enhancement
of its performance, which in terms of solving global optimization issues, yields a significantly higher
outcome than traditional strategies. These improvements show that the proposed hybridized GJO
was capable of outperforming standalone algorithms and obtaining more dependable as well as effi-
cient solutions to numerous optimisations tasks [24]. Last of all, a contrast of the solutions of the GA
to the solutions of the PSO to the OPF problem is discussed highlighting the strengths and weakness
of each method. The findings of the study show the effectiveness of GA in solving complex global opti-
mization problems and high convergence rate of PSO in finding the local optimum. But at the same
time it poses some weaknesses in applications of standalone sizes because it does not address large
power systems. For this purpose, the research presents a dual approach to address these challenges
based on the strength of Algorithm 1 and Algorithm 2 regarding solution quality, problem-solving,
and computational effectiveness of OPF problems [25].

3. Proposed Methodology

In this work, we assess comprehensively three more optimization techniques, namely the PSO tech-
nique, the GWO technique, and the hybrid of the PSO and GWO technique that can solve for the zeta
that is placed in the second-order control system. Settling time and overshoot largely depend on the
damping ratio a key factor that defines the performance of the system. The damping ratio is adjusted
to reduce fluctuations in the desired system characteristics using each of the optimization algorithms.
This research presents the hybrid PSO-GWO algorithm which integrates the exploration of PSO with
the exploitation of GWO to present a robust optimization system which frees the limitations of stand-
alone algorithms. Some of the MATLAB simulation results, which analyse the efficiency of using the
hybrid algorithm with reference to dimensions, convergence speed to the optimal solution, the objec-
tive function errors as well as the control system robustness of both PSO and GWO are then provided
next. In an effort to meet these criteria, the mean performance in multiple runs, standard deviation
and MSE are used. Thus, these metrics reveal how well the algorithm of local optimization is in iden-
tifying good values of control system parameters given dynamic inputs and a constrained setting.
Second, real-world application of the hybrid PSO-GWO algorithm to improve convergence accuracy
and robustness are also supported by the various testing situations. The objectives of this research
are outlined below, each explained as follows:

* A comparison of the performance of the PSO, GWO and Hybrid of PSO and GWO algorithms in
terms of optimizing the damping ratio of a second-order control system having desired overshoot
and settling time characteristics.

Hybrid PSO GWO algorithm was developed and implemented, and integrated into the strengths
of the PSO’s global exploration and GWQO’s local refinement to meet better optimization
performance.

Through MATLAB simulations, the robustness and effectiveness of optimization algorithms have
been evaluated with metrics such as mean objectives value, standard deviation, and MSE to see
how those algorithms perform over multiple runs.

* The applicability of the hybrid PSO-GWO algorithm in improving control system performance in
dynamic control is proved by testing its ability to reduce overshoot and diminishing settling time
in control systems dynamics.

* Ensuring reliability in practical applications, it provides insights about the statistical
behaviour of the algorithms (convergence patterns and stability under constrained optimization
environments).
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In order to determine how hybrid optimization techniques might be applied in other engineer-
ing areas, such as industrial automation, robotics and power systems, where precise parameter
tuning is critical to achieving high performance.

4. Model Setup and Methodology

This section elaborates on the model setup for comparing PSO, GWO, and Hybrid PSO-GWO algo-
rithms in optimizing a control system. This involves explaining the mathematical formulation of the
problem, the algorithmic flow, and the pseudo-code for each optimization technique in detail: initial-
izations, system design, optimization, and performance analysis.

4.1 Initialization and System Design

These optimisations start with the definitions of critical parameters in view, desired damping ratio ({)
overshoot, and settling time of a control system. These defined parameters are driving the optimiza-
tion process to make it stable and efficient.

A) Control System Definition
The system to be optimised is modelled as a second-order transfer function:

1

H(s)=—— 1

( ) s* + 20s+1 M

Where ¢ is defining the damping ratio which is the optimization variable and s is referring to the
Laplace transform variable.

The step response characteristics of the system are used to calculate key system performance met-

rics, including, for example, per cent overshoot and settling time. The objective function is defined as:

f (C:) = |OSdesired_ OSactual |+ |STdesired_ STactual| (2)

Where OS,,,..q and ST, .4 are the desired overshoot and settling time, OS,, ., and ST, ., are the
system’s actual overshoot and settling time for the given ¢ .

B) Simulation and Performance Metrics Setup
Simulation Setup for this work can be summarised as follows:

+ Iterations and Population Size: The algorithms run 50 iterations with a population size of 20
particles/wolves.
Multiple Runs: The simulations are run three times to ensure reliability, and results are
averaged.

* Performance Metrics: Evaluation metrics include the following:
Mean Objective Value: Average objective function value across iterations.
Convergence Rate: Speed at which the algorithm approaches the optimal solution.
MSE: Deviation of the final solution from the ideal target.

Table 1: The scoring system used to evaluate algorithm performance across key metrics.

Algorithm Convergence Rate Accuracy Stability Score (1-5)
PSO Moderate Good Moderate 3
GWO Good Good Good 4

Hybrid PSO-GWO Excellent Excellent Excellent 5
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5. Hybrid Optimization Process

The Hybrid PSO-GWO algorithm utilises PSO and GWO mechanisms to alternate within the optimi-
sation process to explore global space and engage local exploitation.

A) PSO Phase
In the PSO phase, the position and the velocity of the particles will be updated based on their pri-
vate experiences and the global best solution:

k1 k k k
ut —LU'Ui +Cl'r1'(pbest_xi )J'_CZ' r2'(gbest_xi ) (3)

xik+1 — xlk + Uik+1 (4)

Where w 1s the inertia weight, balancing exploration and exploitation, ¢; and ¢, are acceleration

coefficients, 1, and r, are random numbers between 0 and 1, p, ., is the best personal position of the
particle, and g, is the best global position across all particles.

B) GWO Phase
In the GWO phase, wolves’ positions are updated with respect to the position of three best solu-
tions, alpha (a), beta (), and delta (5):

D,=|Cya - x| 5)
Dy=|Cy B - x| (6)
D,;=#C, -6 —x# (7)
. X,+ xg + X )

Where C,, C,, C; are referring to the random coefficients guiding exploration.

The hybrid algorithm can be considered as a combination of PSO and GWO phases, combining the
global exploration and fast convergence of PSO with the local search and refinement of GWO. This
alternation balances exploration and exploitation, enhancing solution accuracy and robustness. The
hybrid algorithm divided into a couple of phases:

+ Exploration: During early iterations, it focuses on searching for a broad solution space in the
PSO Phase.
Exploitation-GWO Phase: The solutions are refined during later iterations by focusing on the
best candidates. In addition, a combination rule is utilized within the hybrid approach to adap-
tively switch between PSO and GWO phases based on convergence behaviour.

In order not to prematurely converge and lose diversity, the best solutions are kept for the next
generation, well-known as Elitism. Random mutations are performed on a small portion of the popu-
lation, such as in the following equation:

X .= X + mutation _ factor -r- (gmax— g“min) 9

mutate

The pseudo-code for the hybrid PSO-GWO algorithm can be outlined as follows, which provides
the sequential steps required for initializing the parameters, running through iterations of PSO and
GWO phases, and updating the solutions until the fulfilment of the termination criteria.
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Algorithm 1: proposed Pseudo-Code for Hybrid PSO-GWO

1. Initialize positions and velocities of particles/wolves randomly
2. Evaluate initial fitness of each particle/wolf
3. While stopping criteria not met:

4. Ifiteration <= threshold

5. % PSO Phase

6. Update velocities and positions using PSO equations
7. else

8. % GWO Phase

9. Update positions using GWO equations

10. end

11. Evaluate fitness of updated solutions

12. Apply elitism and mutation

13. Update best solutions (p_best, g_best, alpha, beta, delta)
14. end

15. Return optimal damping ratio (zeta_opt)

6. Benchmark Functions

Benchmark functions are widely used to test and compare the performance of different optimization
algorithms. They can be thought of as controlled environments where algorithms are put to the test in
regard to their ability to explore complex search spaces, cope with local minima, and converge toward
global optima. A number of benchmark functions that were used in this work are discussed in the
following with their mathematical representations, characteristics, and challenges.

6.1 Sphere Function

One of the simplest and most used benchmark functions is the Sphere function. It is convex and uni-
modal with its global minimum at its origin, that is, at coordinates (0,0). Due to the smooth, parabolic
shape of this function, it often serves as a basic test for optimization algorithms.

f(x,y)=x*+y (10)

6.2 Rastrigin Function

Rastrigin is a highly multimodal function with a multitude of local minima due to the cosine terms.
Paradoxically, the global minimum can be found at the origin, that is, (0,0). The periodic ripples intro-
duced by the cosine terms make it a pathfinding test case for any optimizer.

f(x,y) =10-n+ (x2 -10- cos(27rx)) + (yz -10- cos(27ry)) (11)

6.3 Ackley Function

The Ackley function has a very flat outer region and a central basin associated with many local
minima. It is a nice gradient but its steep peaks and valleys make it a difficult function. The origin
(0,0) is the (global) minimum.

f(x,y) =-20- exp(—O.Q -,/0.5- (x2 + yz)) - exp(0.5 . (cos(an) + cos(27ry))) +e+20 (12)
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6.3 Rosenbrock Function (Banana Function)

It features a curvature similar to that of the name, and has a narrow deep valley with its derivative
at its global minimum at (1,1) for the Rosenbrock function, also known as the ‘Banana function’. The
global minimum is easy to find mathematically, but the bad steep sides and narrow valleys are very
hard to optimize because the optimization algorithms have a very hard time converging well.

f(x,y)=@1-x)*+100-(y - x*)* (13)

6.4 Griewank Function

A multimodal functionality with many local minima mixed over its search space is called the Griewank
function. With increasing distance of variables away from 0, the polynomial term is growing and there
are oscillations resulting from cosine terms. Since the global minimum is at the origin: (0,0), this is a
good test bench for the algorithms that get stuck in their local minimums.

f(x,y)=1+ 42(2)0 +4(})}$—cos(x)-cos[%j (14)

The global minima of the benchmark function, domain in which they are defined, characteristics
and level of difficulty are summarized in Table 1 below.

6.5 Applications for Optimization

These benchmark functions test various capabilities of optimization algorithms, such as:

Navigating Multimodal Landscapes: These functions like Rastrigin and Griewank impose
problems on the algorithms to reach out from local minima.

+ Handling Narrow Valleys: The Rosenbrock function challenges an algorithm to traverse
curved, narrow paths.
Baseline Testing: The basic functionality test is provided by the Sphere function, which poses
a simple convex problem.

* Balancing Exploration and Exploitation: Ackley’s main idea is to test whether an algorithm
1s capable of balancing broad research (exploration) with local biasing (exploitation).

Such benchmark functions present challenging diverse problems for the evaluation of robustness,
efficiency, and convergence capabilities of optimization techniques that is applied in our case.

7. Results and Discussion

In this section, we summarise the outcomes and also do a brief analysis of the performance of the three
optimisation methods (PSO, GWO, and Hybrid PSO-GWO) in terms of the results and the results from

Table 1: Our updated benchmark functions.

Function Global Minimum Domain Nature Challenge Level
Sphere f (0, 0)20 [-5.12, 5.12] Convex, Unimodal Low
Rastrigin f(O, )=0 [-5.12, 5.12] Multimodal High
Ackley f (0, 0) -0 [-5, 5] Multimodal Moderate
Rosenbrock f (1, 1) -0 [-5, 5] Non-convex, Unimodal High
Griewank f (0, 0) -0 [-5, 5] Multimodal High
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simulation and benchmark evaluation, which were run in MATLAB. The results indicate the relative
effectiveness of the performance of each algorithm for optimising towards different objectives while
measuring convergence sharpness, accuracy, and robustness with respect to different benchmarks.
An analysis of each strategy presented reveals the strengths and weaknesses of each approach and
specifically shows the Hybrid PSO-GWO algorithm surpasses the others by significantly improving
performance in complex optimization problems where accurate results are desired.

7.1 Hybrid PSO-GWO algorithm for Intelligent System

In our study, the Hybrid PSO-GWO implementation of our algorithm is optimized to optimize the
system parameters in order to get the optimal performance. The algorithm exploits the powers of
GWO along with the exploration powers of PSO. Likewise, this hybrid approach makes the most of
the strengths of these algorithms: PSO because it has the potential to escape from local optimum
and GWO due to its algorithm slowing down the convergence. To gain both optimization accuracy
and computational efficiency, a Hybrid PSO-GWO algorithm with careful choice of key parameters
was made. The number of iterations set to 50, decided the length of the optimization process. In
each iteration (or step), the particles (candidate solutions) are evaluated and re-evaluated based on
performance. By setting the number of iterations to 50, the algorithm converges to a near-optimal
solution, while incurring a small computational cost. A population size of 20 particles is chosen as
it assures sufficient diversification of the search space without excessively increasing computational
cost. Balancing the need for exploration with the computational overhead of a larger population, this
number was chosen. The fitness function given was devised to minimize system output variation, by
minimizing overshoot and settling time. By lower fitness values, these lower fitness values mean that
better performance is indicated, which then tells the algorithm to go to optimal solutions. Specifically,
it updated the positions of particles using PSO-inspired velocity updates and GWO-inspired leader
updates. With this dual-update mechanism, exploration of the solution space was ensured to be
robust, while also quickly converging on the global optimum. The convergence comparison in Figure 2
shows the superiority of the Hybrid PSO-GWO algorithm. Compared with standalone PSO and GWO
algorithms, the hybrid approach showed a consistent convergence in a faster and more accurate way.
PSO demonstrated slow convergence with large objective values, and GWO performed slower than
PSO. The hybrid algorithm showed a steady decrease in objective value, which decreased at lower
values with less variability across iterations. This shows its robustness with its reliability in making
consistent performance under different runs.

7Convergence Comparison of PSO, GWO, and Hybrid PSO-GWO
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Figure 2: Convergence comparison of the utilised algorithms.
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Co7mparison of Final Best Scores for PSO, GWO, and Hybrid PSO-GWO

Mean Final Best Score

PSO GWO Hybrid PSO-GWO

Figure 3: Comparison of final best scores for the utilised algorithms.

Each algorithm’s mean final best scores are then compared in Figure 3. The level of convergence
and base solutions of the GWO is slower than other methods, which was reflected in the highest value
of the score. While slightly lower in score than GWO, the hybrid PSO-GWO case outperformed PSO
significantly. Finally, this result shows the hybrid algorithm’s effectiveness in balancing exploration
and exploitation to produce superior optimization results.

The standard deviation of the final score over multiple runs is shown in Figure 4. The results
showed that the PSO and the hybrid PSO GWO algorithm had low variability suggesting relatively
consistent performance. On the other hand, GWO exhibited greater variability suggesting poor sensi-
tivity to the initial conditions and instability in escaping local minima. The hybrid algorithm demon-
strates its reliability for practical use due to its stability across runs.

The effect of the hybrid algorithm is shown in Figure 5, where the MSE comparison shows. The
MSE for hybrid PSO-GWO was lower than the above approaches and the lowest MSE was achieved
by the hybrid PSO-GWO approach. MSE showed GWO is having challenges in finding the global opti-
mum. The superior ability of the hybrid algorithm to handle complex optimization problems leads to
its significantly lower MSE, and thus its significance in real-world applications.

Stoagdard Deviation of Final Scores for PSO, GWO, and Hybrid PSO-GWO

o o
o© N o )
BN o ) o

Standard Deviation of Final Scores
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PSO GWO Hybrid PSO-GWO

Figure 4: Standard deviation of final scores for the utilised algorithm.
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MeagOSquare Error (MSE) Comparison for PSO, GWO, and Hybrid PSO-GWO

Mean Square Error

PSO GWO Hybrid PSO-GWO

Figure 5: MSE comparison for the utilised algorithms.

7.2 Results of Benchmark Functions

A set of benchmark functions is utilised in this research to evaluate the performance of the Hybrid
PSO-GWO. With the hope of representing a variety of optimization challenges, from simple convex
to highly multimodal and deceptive landscapes, these benchmark functions were chosen. By testing
this algorithm, we could assess the robustness, efficiency and ability to find global minima free of
local traps, as all are important qualities to solve a complex optimization problem. Figure 6 shows
the Sphere Function which is a smooth, convex benchmark function with a global minimum at (0,0).
A basic optimization problem of the parabolic shape has no local minima and is represented by the
Sphere function. The figure which shows that the search trajectory approaches the global minimum
and does not deviate from it rapidly converged in the Hybrid PSO-GWO algorithm. This constitutes
an important result since it demonstrates that the direct gradient is exploited by the algorithm and
that simple convex problems, can be quickly solved with minimal computational effort. We show that
the Hybrid PSO GWO algorithm exhibits high precision and reliability in performing the Sphere
Function, which validates that the Hybrid PSO GWO algorithm can handle straightforward optimi-
zation tasks.

Figure 7 shows the Rastrigin Function, a highly multimodal function with a periodic landscape made
up of cosine ripples. However, the function has a large number of local minima that are easy-to-catch
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Figure 6: Illustration for the sphere function.
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Rastrigin Function
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Figure 7: Illustration for the Rastrigin function.

optimization algorithms that do not have strong global search properties. The Hybrid PSO-GWO algo-
rithm successfully manoeuvred the rippled topology and located the global minimum at (0,0) despite
the complication of the topology. In the figure, we see how the hybrid algorithm scans the whole func-
tion space and only focuses on promising regions. The ability to escape local minima and converge to
the global solution determines the robustness of the Hybrid PSO-GWO algorithm for the solution of
the multimodal optimization problem.

In Figure 8 we can see the Ackley function which has a very flat outer part and deep valleys leading
to a global local minimum in the center. The function has a flat landscape, which is highly deceptive
and hard for any optimization algorithm dependent on local gradient information. Nevertheless, the
Hybrid PSO GWO algorithm overcame this challenge by its capability to traverse the flat region and
converge at the global minimum as shown in the previous Figure 8. Being an effective and adaptable
algorithm, it is able to keep the search momentum in flat regions while concentrating on steep gradi-
ents at the minimum.

Figure 9 represents the Rosenbrock function, also called the “Banana Function.” The given func-
tion has a narrow valley on a ridge with steep, narrow sides; this greatly makes optimization algo-
rithms converge toward the global minimum at (1,1). The Hybrid PSO-GWO follows the valley of the
curve and obtains the global minimum. It just serves to show that it can work very well on complex
topologies and balance exploration versus exploitation very well. This is because the hybrid approach
will prevent the algorithm from drifting out of the valley, rather than leading to its convergence in
suboptimal regions of the valley prematurely. The Rosenbrock Function, with this problem being
more and more complicated, needed more iterations compared to simpler functions, but Hybrid PSO-
GWO performed robustly with this challenging problem.

Figure 10 shows the Griewank Function, a high-dimensional, multimodal problem with many local
minima strewn throughout the search space. The mixture of quadratic growth and cosine modula-
tions gives the landscape a hard topography in which finding the global minimum becomes difficult.
It is found that the Hybrid PSO-GWO algorithm has very good performance in terms of searching
the entire search space and approaching the position corresponding to the global minimum of (0, 0).
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Ackley Function
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Figure 8: Illustration for the Ackley function.
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Figure 9: Illustration for the Rosenbrock function.

The algorithm is able to avoid falling into the many local minima and goes on towards an optimal
solution, as shown in the figure. This result demonstrates the strength of the hybrid algorithm in

solving highly multimodal optimization problems, and in balancing global exploration with local
refinement.



Al-zamili J.J, Results in Nonlinear Anal. 8 (2025), 133-147. 146

Griewank Function

Figure 10: Illustration Griewank function.

8. Conclusion

In this work, we developed and comparatively implemented three optimization algorithms including
PSO, GWO, and a Hybrid PSO-GWO algorithm in the context of the optimization of system param-
eters in order to meet optimised performance in a dynamic control task. To overcome these limita-
tions of standalone algorithms, that is exponential convergence time and premature convergence, we
propose the Hybrid PSO-GWO algorithm which combines the exploration strengths of PSO and the
exploitation abilities of GWO. Benchmark functions and convergence analysis were used to evaluate
each strategy’s performance with an emphasis on reducing objective value stability and robustness.
We found that the hybrid PSO-GWO algorithm was consistently faster in convergence speed, more
accurate and more robust than PSO on its own, and GWO on its own, in line with what we observed
in our results. For example, the hybrid algorithm performed better on the more complex benchmark
functions, such as Rastrigin, Ackley, Rosenbrock and Griewank, where it encountered local minima
and converged to the global minimum. The Hybrid PSO-GWO algorithm (in terms of MSE and final
best scores) was better than its standalone counterparts in terms of lower errors as well as better sta-
bility during multiple runs. In complex optimization landscapes having multimodal, non-convex and
deceptive features, the hybrid algorithm leveraging the global search power of PSO and exploitation
ability of GWO can highly conductively searching the complex regions effectively. Furthermore, it
was demonstrated that the Hybrid PSO-GWO algorithm is robust and versatile in solving a variety
of problems by benchmark evaluations. This ability of the algorithm to maintain the balance between
exploration and exploitation led to consistent performance in cases of both simple convex problems
and difficult multimodal functions. The findings affirm Hybrid PSO-GWO as a plausible optimization
tool for relativity when applied to real-world problems that encompass dynamics and adaptivity of
solutions.
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