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Abstract
This paper examines the basic features of perturbed statistical convergence in the context of perturbed 
metric spaces. The suggested method expands on the standard concept of statistical convergence by 
using a perturbation function that shows the errors that might happen while measuring distance. The 
relations of this new type of convergence with classical and statistical convergence are discussed in 
detail. There are some examples and counterexamples that support the new theoretical results. 
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1. Introduction

Mathematics contains numerous distinct sub-topics and although these topics might seem indepen-
dent at first, they are often fundamentally interconnected. One of the main reasons why such fields 
are interconnected is because similar concepts and challenges might arise in different fields. Thus, 
methods developed to overcome obstacles in a specific field may result in expansions in another field. 
However, a multidisciplinary viewpoint is necessary when adapting new approaches from one field 
into a solution of a situation in another.

Standard distance measurement functions often fail to model real-life problems due to their failure 
to account for measurement errors. A newly introduced metric-like function that considers measure-
ment errors was first proposed in metric fixed point theory [9].

This paper focuses on the possibility of applying the newly introduced perturbed metric functions 
in the context of statistical convergence, aiming to construct a more realistic and error-tolerant con-
vergence structure.
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2. Preliminaries

Errors occur in almost all measurements. Consequently, there is always a chance that measurements 
may be wrong; such errors may be due to human factor, environmental influences, measurement sen-
sitivity, or other causes. For instance, cables used in energy transmission face higher temperatures 
during the summer months owing to rising air temperatures. The rise in the cable’s temperature 
results in an expansion of its length. Therefore, the length of the cable is perturbed depending on the 
season.

In order to integrate these measurement mistakes into mathematical models, "Perturbed metric 
space" structure is developed by Jleli and Samet in [9]. The idea behind the perturbed metric space is 
fundamentally logical. It is predicated on the notion that the "real distance" should be equivalent to 
the difference between the error and the measured distance. Thus, the notion of metric space moves 
one step closer to reality. Such generalizations of metric structures can also be placed within the 
broader framework of hyperconvex and abstract convex spaces studied in KKM theory; see [13].

The definition of perturbed metric space will now be presented.

Definition 2.1 Let D P X X, : [0, )� � �  be two mappings. We say that D is a perturbed metric on X  
with respect to P  if the function 

d x y D x y P x y( , ) := ( , ) ( , )−

defines a metric on X . That is, for all x y z X, , ∈ , the following conditions hold:  
•	 D x y P x y( , ) ( , ) 0� � , 
•	 D x y P x y( , ) ( , ) = 0−  if and only if x y= , 
•	 D x y P x y D y x P y x( , ) ( , ) = ( , ) ( , )− − , 
•	 D x y P x y D x z P x z D z y P z y( , ) ( , ) ( , ) ( , ) ( , ) ( , )� � � � � . 
In this context, the function P  is referred to as a perturbation, the difference d D P= −  is called 

the exact metric, and the triple ( , , )X D P  is termed a perturbed metric space.
Recent and ongoing studies have been conducted on this subject. (See also [2],[3], [10]).
Following this definition, a mathematician would undoubtedly want to see an example to demon-

strate the accuracy of the definition. In [9], the reader can find several examples of perturbed metric 
spaces, illustrating their differences from regular metric spaces. Based on these examples, the follow-
ing example with a similar structure is given.

Example 2.2 Let =X  and define × → ∞, : [0, )P D X X  by 

+ + − +( , ) =1 sin( ), ( , ) =| | ( , ).P x y x y D x y x y P x y

Then the exact metric is 
− −( , ) = ( , ) ( , ) =| |.d x y D x y P x y x y

Since d  is the usual metric on  , it satisfies non-negativity, identity of indiscernibles, symmetry 
and the triangle inequality. Therefore ( , , )D P  is a perturbed metric space with perturbation P  
and exact metric d . Hence, D  is not a metric, but can be viewed as a perturbed metric.

Consequently, D  is not a metric, but it satisfies the conditions of a perturbed metric.
At the base of the surface, the oscillations are clearly aligned with the x y−  direction in the xy

-plane, producing wave-like patterns parallel to the diagonal.
This article also includes the notion of statistical convergence as a primary topic. Classical con-

vergence depends on each of the terms in a sequence behave, but statistical convergence allows for 
surprising collections of indexes with zero density.

We would like to emphasise the essential principles of this subject.

� ( ) = #{ : }M m n m M
nn��

� �
lim

where #M  denotes the cardinality of a subset M ⊂  . 
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The statistical convergence of a sequence is characterised using the concept of natural/asymptotic 
density. The following definition will clarify this connection.

Definition 2.3 Let ( )xk  be a sequence of real numbers. ( )xk  is said to be statistically convergent to a 
number x  if, for every ε > 0, 

� �({ : }) = 0m x xm � � (1)

Or, to put equation (1) another way 

n

mm n x x
n��

� � �� �
lim

# :
= 0,

� (2)

holds. In the meantime, we use the next notation to denote this statistical limit: 

st x x
k

k�
��
lim = .

The statistical convergence of a sequence is characterised using the concept of natural/asymptotic 
density in [6] and [7].

It is well known that any convergent sequence statistically converges to same limit point. 
Nevertheless, the reverse is not generally true. This relaxation makes the convergence idea more 
flexible, which is notably helpful in analysis and summability theory.

Finally, we will emphasize the statistical version of the commonly recognized notion of the "Cauchy 
sequence".

Definition 2.4 A sequence x xk= ( ) is said to be statistically Cauchy sequence if for every ε > 0, there 
exists a n0 ∈ such that 

� �({ : }) = 0.
0

m x xm n� �

Figure 1: The graph of D x y( , )
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3. Main Results

Definition 3.1  Let ( , , )X D P  be a perturbed metric space, and let ( )xk  be a sequence in X . We say that 
( )xk  is perturbed statistically convergent to a point x X∈  if, for every ε > 0, the set 

k D x x P x xk k� � �� � : ( , ) ( , )�

has natural density zero, i.e., 

� �k D x x P x xk k� � �� �� � : ( , ) ( , ) = 0. (3)

In this case, we write 

pst x x
k

k�
��
lim = .

Remark 3.2 We need to clarify that we used a different technique in Definition 3.1 from usual statis-
tical convergence. In classical statistical convergence, it is assumed that a constant error or no error 
occurs while measuring the distance of the terms of a sequence from the number x . However, in this 
formulation, perturbation occurs while calculating the distance of each term of sequence to the point 
x . The process integrates a P x xk( , )  perturbation amount, and permitting the convergence analysis’s 
tolerance level to change dynamically in response to the index k . 

Remark 3.3 Perturbed statistical convergence properly generalizes both classical statistical conver-
gence and rough statistical convergence, depending on the choice of the perturbation function P :

•	 If P x xk( , ) = 0  for all k∈ , then the definition reduces to classical statistical convergence in [12]. 
•	 If P x x rk( , ) = 0≥  is constant for all k∈ , then the definition becomes: 

� �{ : ( , ) } = 0,k D x x rk� � �� �

which corresponds to rough statistical convergence of degree r  in [4]. 
Therefore, the proposed notion of convergence offers a unifying framework that includes both of 

these well-known types as special cases. In summary, PST-convergence acts as a unifying framework 
encompassing both statistical and rough statistical convergence, depending on the choice of the per-
turbation function.

Hence, the previous definition provides a more realistic framework since it works by including 
error terms.

This generalization aligns with earlier work on statistical convergence in alternative metric struc-
tures [1], [5], [8], [11], [14], [12].

Table 1 shows how the suggested PST-convergence fits in with other methods of convergence. In 
particular, it includes both statistical and rough statistical convergence as special cases and provides 
various methods to describe uncertainty in real-world measurements.

Table 1: Comparison of convergence methods
Type Notation Uses Gen. of Spec. case of 
Classical lim x xk =  Metric — All others (strict) 
Statistical st xk− lim  Density Classical Rough, PST 
Rough Stat. st xr k− lim  Density + r  Statistical PST with const. P  
PST pst xk− lim  Density + P x xk( , )  Stat. + Rough —
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Example 3.4  Let X =  . Define the sequence ( )xk  by 

x
k

k =
1, 2 ,
0, .

if
otherwise

��
�
�



This sequence is neither classically nor statistically convergent to 0, since 

� �{ :| 0| } = 1
2

0.k xk� � �� � �

Define a non-constant perturbation function: 

P x k
k

k( ,0) =
1 1

( 2)
, 2 ,

0, .

�
�

��

�
�

��
log

if

otherwise



Assuming the usual metric D x xk k( ,0) =| 0|− , we examine the inequality 

D x P xk k( ,0) < ( ,0) .� �

For large values of k , this inequality is satisfied for all even indices, as P xk( ,0) 1� �� , while 
D xk( ,0) =1 remains fixed. Therefore, the set 

k D x P xk k� � �� � : ( ,0) ( ,0) �

is finite for any ε > 0, and has natural density zero.
To visualize this behavior, we fix ε = 0.2 . The following graph clearly illustrates that for sufficiently 

large k , the inequality D x P xk k( ,0) < ( ,0) � �  holds.

Figure 2: Graphical illustration of the inequality D x P xk k( ,0) < ( ,0) � �  for ε = 0.2 . The plot shows 
that for large k , the perturbation term P xk( ,0) � �  becomes greater than D xk( ,0) , which supports 

the PST-convergence of the sequence.
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Theorem 3.5 Let ( , , )X D P  be a perturbed metric space, and let d D P= −  be the exact metric on X . If a 
sequence ( )xk  in X  is convergent to a point x X∈  with respect to d , then ( )xk  is perturbed statistically 
convergent to x . 

Proof. Let ε > 0 be given. Since ( )xk  converges to x  in the exact metric d D P= − , there exists N ∈  
such that for all k N≥ , we have 

D x x P x xk k( , ) ( , ) < .� �

This implies 

D x x P x x k Nk k( , ) < ( , ) .� �� for all

Therefore, the set 

A k D x x P x xk k:= { : ( , ) ( , ) }� � � �

is finite. Since every finite subset of   has natural density zero, we conclude that 

δ ( ) = 0.A

Hence, by Definition 3.1 , ( )xk  is perturbed statistically convergent to x .
We will now investigate the relationship between the proposed convergence method and classical 

statistical convergence in order highlight the innovative aspect of our work:

Theorem 3.6  Let ( , , )X D P  be a perturbed metric space and let ( )xk  be a sequence in X  such that 

st �
��k

kx xlim = .

If the perturbation function P x xk( , )  is bounded, i.e., 

� � �M P x x M kk> 0 ( , ) ,such that for all 

then ( )xk  is perturbed statistically convergent to x . That is, 

pst �
��k

kx xlim = .

Proof. Let ε > 0. Since ( )xk  is statistically convergent to x , we have 

� �k D x xk� �� �� � : ( , ) = 0.

Also, since P x x Mk( , ) ≤ , for all k∈ , we know that 

� �� �P x xk( , ) .

Hence, the set 

k D x x P x x k D x xk k k� � �� � � � �� � : ( , ) ( , ) : ( , )� �

has natural density zero. Thus, by Definition 3.1, ( )xk  is perturbed statistically convergent to x .

Remark 3.7 The converse of Theorem 3.6 is not true in general. That is, there exist sequences which 
are perturbed statistically convergent but not statistically convergent. Such an example was given in 
Example 3.4 

The uniqueness of perturbed statistical limit is demonstrated by the following theorem.
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Theorem 3.8 Let ( )xk  be a sequence in a perturbed metric space ( , , )X D P . If 

pst and pst� �
�� ��k

k
k

kx x x ylim lim= = ,

then x y= . 

Proof. Assume for contradiction that x y≠ . Since d x y D x y P x y( , ) = ( , ) ( , ) > 0− , let 
� = 1

2
( ( , ) ( , )) > 0D x y P x y� .

Define the sets 

A k D x x P x x B k D x y P x yk k k k:= { : ( , ) ( , )}, := { : ( , ) ( , )}.� � � � � � � �

Since xk  is perturbed statistically convergent to both x  and y , we have 

δ δ( ) = 0 ( ) = 0.A Band

However, for all k∈ , the triangle inequality implies 

D x y D x x D x yk k( , ) ( , ) ( , ),� �

so at least one of D x xk( , ) or D x yk( , ) must be greater than or equal to � � �P( ) , which means k A B� �  
for all k .

Thus, 

� � �( ) =1 ( ) ( ),A B A B� � �

which contradicts δ δ( ) = ( ) = 0A B . Therefore, x y= . 
The concept of a Cauchy sequence, common in classical analysis, will be redefined using a per-

turbation function. Consequently, a widely general Cauchy sequence structure with estimated error 
sensitivity will be developed.

Definition 3.9 Let ( , , )X D P  be a perturbed metric space. A sequence ( )xk  in X  is called a perturbed 
statistically Cauchy sequence if, for every ε > 0, there exists n0 ∈ such that 

� �k D x x P x xk n k n� � �� �� � : ( , ) ( , ) = 0.
0 0

With the following remark, we will explain the relationship between the ideas of statistical conver-
gence and statistical Cauchy sequence created using the perturbation function.

Remark 3.10 Every perturbed statistically convergent sequence is also perturbed statistically Cauchy. 

Proof. Assume that pst − lim x xk = . Let ε > 0 be given.
Define the set 

A k D x x P x xk k:= : ( , ) ( , ) .� � �� � �

By Definition 3.1, we have 

δ δ( ) = 0 ( ) =1.A Acorequivalently

Take some n Ac0 ∈ . Then 

D x x P x xn n( , ) <
2

( , ).
0 0

�
�
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Now consider 

k D x x P x x k D x x P x xk k k n k n� ��
�
�

�
�
�
� � �� � : ( , ) <

2
( , ) : ( , ) < ( , ) .

0 0

�
�

Let k Ac∈ , i.e., D x x P x xk k( , ) <
2

( , )�
� . Then by part (iv) of Definition 2.1, which is the generaliza-

tion of the triangle inequality in perturbed metric spaces, we have: 

D x x P x x D x x P x x D x x P x xk n k n k k n n( , ) ( , ) ( , ) ( , ) ( , ) ( , )

<
2

0 0 0 0
� � � � �

�
� �

22
= .�

Hence, 

D x x P x xk n k n( , ) < ( , ),
0 0

� �

which implies that 

k k D x x P x xk n k n� � �� � : ( , ) < ( , ) .
0 0

�

Therefore, the inclusion 

k D x x P x x k D x x P x xk k k n k n� ��
�
�

�
�
�
� � �� � : ( , ) <

2
( , ) : ( , ) < ( , )

0 0

�
�

implies 

� �k D x x P x xk n k n� �� �� � : ( , ) < ( , ) =1.
0 0

Hence, we conclude that 

� �k D x x P x xk n k n� � �� �� � : ( , ) ( , ) = 0,
0 0

and by Definition 3.1, the sequence is perturbed statistically Cauchy. 
Even if PST-convergence gives you more options, it turns out that most of the time, these sequences 

act like usual convergent ones. The next theorem makes this viewpoint more official.

Theorem 3.11 Let ( , , )X D P  be a perturbed metric space. If a sequence ( )xk  in X  is perturbed statisti-
cally convergent to a point x X∈ , then there exists a sequence ( )yk  in X  such that:  

	 1.	 y xk k=  for all k  outside a set of natural density zero, 
	 2.	 ( )yk  converges to x  with respect to the exact metric d D P= − . 

Proof. Let εn n
= 1  for each n∈ . Since ( )xk  is perturbed statistically convergent to x , we have 

A k D x x P x xn k n k:= : ( , ) ( , )� � �� � �

satisfies δ ( ) = 0An  for each n.
Define the exceptional set 

A A
n

n:= .
=1

∞


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Then δ ( ) = 0A  by countable subadditivity of natural density.
Now define a new sequence ( )yk  by 

y
x k A
x k Ak
k= , ,
, .
if
if

�
�

�
�
�

Clearly, y xk k=  for all k A∉ , and y xk =  for k A∈ .
Now observe that for k An∉ , we have 

D y x P y x D x x P x x
nk k k k( , ) ( , ) = ( , ) ( , ) < 1 .− −

For k A∈ , y xk = , so D y x P y xk k( , ) ( , ) = 0− .
Hence, for any ε > 0, there exists N ∈  such that for all k N≥ , 

d y x D y x P y xk k k( , ) = ( , ) ( , ) < .� �

Therefore, y xk →  with respect to the exact metric d D P= − .

Remark 3.12 This result emphasizes that perturbed statistical convergence implies convergence in the 
exact metric after modifying the sequence on a set of natural density zero. 
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