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Abstract

This paper aims to prove a �xed point theorem for multi-valued mapping using α-F -contraction in partial
metric spaces. Furthermore, we prove a �xed point theorem for F -Hardy-Roger's multi-valued mappings
in ordered partial metric spaces. Speci�cally, this paper intends to generalize the theorems by Ali and
Kamran, Sgroi and Vetro and Kumar. We also provided illustrative examples and some applications to
integral equations.
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1. Introduction

In 1969, Nadler [27] introduced multi-valued contraction mappings using the Hausdor� metric and ex-
tended Banach's contraction principle [8] from single valued to multi-valued mappings. Since then, several
researchers were in�uenced by his work and generalized results for multi-valued mappings in various spaces.
The theory of multi-valued mappings has many applications in diverse areas such as in control theory,
approximation theory, di�erential equations and economics.

In 1973, Hardy-Rogers [17] gave a generalization of the Reich �xed point theorem [37]. Since then, several
authors have been using di�erent Hardy-Rogers contractive type conditions in order to obtain �xed point
results. Some of them are [10, 11, 28, 35, 42].

In 1994, Matthews [24] came up with a generalization of the metric space called the partial metric space
by relaxing the zero self distance axiom for the metric space. He extended the Banach contraction principle
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to partial metric space and found applications in computer networking, data structure, and computer pro-
gramming languages. In recent years a number of researchers have extended �xed point theorems in metric
spaces to partial metric spaces [see [6, 31, 32, 41] ].

In 2004, Ran and Reurings [36] followed by Nieto and Rodriguez-Lopez [29] in 2006 introduced the study
of �xed point theorems for partially ordered sets along with relevant. Recently Abbas et al. [1] introduced
the analogue of F -contraction to establish ordered-theoretical results. On the other hand, Durmaz et al. [13]
introduced the concept of ordered metric space by using the results of Ran and Reurings [36] (also one can
refer to [22, 29] the reference therein).

In 2012, Wardowski [44] introduced a generalization of Banach contraction principle in metric spaces.
After massive in�uence, research was carried out on F -contraction for single and multivalued mappings in
various spaces. For literature, one can see [2, 5, 15, 23, 25, 33, 34, 39, 45] and the references therein. Kara-
pinar and Samet [21] generalised Banach contraction principle by proving the results using α-ψ-contraction.
For more detail we refer the reader to [16, 18, 19]. In 2016, Ali and Kamran [3] proved a �xed point in
metric spaces by combining the concepts of α-admissible mappings and F -contractions to get a generalized
contraction named α-F -contraction. For more details one can refer to [1, 7, 12, 14, 26, 43].

2. Preliminaries

We now introduce preliminaries that will be of use in this paper.
First, we describe the partial metric space and some of its properties.

De�nition 2.1. [24] A partial metric on a non-empty set X is a mapping p : X ×X → R+, such that for
all x, y, z ∈ X

(P1) 0 ≤ p(x, x) ≤ p(x, y),

(P2) x = y if and only if p(x, x) = p(x, y) = p(y, y),

(P3) p(x, y) = p(y, x) and

(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

The pair (X, p) is said to be a partial metric space.

As an example, let X = R+ and let p(x, y) = max{x, y} for all x, y ∈ X. Then (X, p) is a partial metric
space.

Each partial metric p on X generates a T0 topology τp on X with a base being the family of open balls
{Bp(x, ε) : x ∈ X, ε > 0} where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Lemma 2.2. [24] If p is a partial metric on X, then the function ps : X ×X → R given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X, de�nes a metric on X.

De�nition 2.3. [24]

(i) A sequence {xn} in a partial metric space (X, p) converges to x ∈ X if and only if p(x, x) =
limn→+∞ p(x, xn).

(ii) A sequence {xn} in a partial metric space (X, p) is called a p-Cauchy sequence if only if limn,m→∞ p(xn, xm)
exists (and is �nite).

(iii) A partial metric space (X, p) is said to be complete if every p-Cauchy sequence {xn} in X converges,
with respect to τp, to a point x ∈ X such that

p(x, x) = lim
n,m→+∞

p(xn, xm).
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We take note of the following lemma.

Lemma 2.4. [24]. Let (X, p) be a partial metric space.

(i) A sequence {xn} is p-Cauchy in a partial metric space (X, p) if and only if it is a Cauchy in the metric
space (X, ps).

(ii) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete. Moreover

lim
n→∞

ps(x, xn)⇔ p(x, x) = lim
n→∞

p(x, xn) = lim
n,m→∞

p(xn, xm).

We obtain the description and properties of the partial Hausdor� metric from Aydi et al. [6].
Let CBp(X) be the family of all non-empty, closed and bounded subsets of a partial metric space (X, p),

induced by the partial metric p. Furthermore, the set A is said to be a bounded subset in (X, p) if there
exists x0 ∈ X and N ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0, N)

p(x0, a) ≤ p(a, a) +N.

For all A,B ∈ CBp(X) and x ∈ X, we de�ne:

p(x,A) = inf{p(x, a) : a ∈ A};
δp(A,B) = sup{p(a,B) : a ∈ A};
δp(B,A) = sup{p(b, A) : b ∈ B}.

Note that
p(x,A) = 0 =⇒ ps(x,A) = 0, (1)

where
ps(x,A) = inf{ps(x,A), x ∈ A}.

We de�ne the partial Hausdor� metric Hp : CBp × CBp → R+ as

Hp(A,B) = max{δp(A,B), δp(B,A)}.

We state some properties of the partial Hausdor� metric Hp.

Lemma 2.5. [6] Let (X, p) be a partial metric space, A,B ∈ CBp(X) and h > 1. For any a ∈ A, there
exists b(a) ∈ B such that

p(a, b) ≤ hHp(A,B).

Proposition 2.6. [6] Let (X, p) be a partial metric space, then for any A,B,C ∈ CBp(X), we have

(i) δp(A,A) = sup{p(a, a) : a ∈ A};

(ii) δp(A,A) ≤ δp(A,B);

(iii) δp(A,B) = 0→ A ⊆ B;

(ii) δp(A,B) = δp(A,C) + δp(C,B)− infc∈C p(c, c).

Proposition 2.7. [6] Let (X, p) be a partial metric space. For all A,B,C ∈ CBp(X), we have

(H1) Hp(A,A) ≤ Hp(A,B);
(H2) Hp(A,B) = Hp(B,A);
(H3) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− inf

c→ C
p(c, c).

It is easy to see that Hp(A,B) = 0→ A = B.
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Remark 2.8. [4] Let (X, p) be partial metric space and A be a nonempty subset of X. Then a ∈ Ā if and
only if

p(a,A) = p(a, a),

where Ā denotes the closure of A with respect to the partial metric p. Note that A is closed in (X, p) if and
only if Ā = A.

The following explanations for developing the de�nition of the F -contraction are obtained fromWardowski
and Dung [45].

Let F : R+ → R be a mapping satisfying

(F1) F is strictly increasing, i.e. for all α, β ∈ R+, α < β implies F (α) < F (β);

(F2) For each sequence {αn}n∈N of positive numbers, limn→∞ αn = 0 if and only if limn→∞ F (αn) = −∞;

(F3) There exists k ∈ (0, 1) satisfying limα→0+ α
kF (α) = 0.

We denote the family of all functions F satisfying conditions F1 − F3 by F. Some examples of functions
F ∈ F are:

(1) F (a) = ln a;
(2) F (a) = a+ ln a.

De�nition 2.9. [38] Let T : X → X and α : X ×X → [0,+∞). We say that T is α-admissible if x, y ∈ X,
α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

De�nition 2.10. [9] Let A and B be two non-empty subsets of (X,�), the relation between A and B are
denoted and de�ned as follows:

(1) A ≺1 B: if for every a ∈ A there exists b ∈ B such that a � b,
(2) A ≺2 B: if for every b ∈ B there exists a ∈ A we have a � b,
(3) A ≺3 B: if A ≺1 B and A ≺2 B.

Theorem 2.11. [40] Let (X, d,�) be an ordered complete metric space and Let T : X → CB(X). Assume
that there exists F ∈ F and τ ∈ R+ such that

2τ + F
(
H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) +

δd(x, Ty) + Ld(y, Tx),

for all comparable x, y ∈ X with Tx 6= Ty, where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1 and γ 6= 1. If the
following condition are satis�ed:

(i) there exists x0 ∈ X such that {x0} ≺1 Tx0;

(ii) for x, y ∈ X, x � y implies Tx ≺2 Ty ;

(iii) X is regular;

then T has a �xed point.

Kumar [22] extended the results due to Durmaz et al. [13] where he introduced the following de�nition
and theorem on ordered partial metric spaces using two compatible mappings:

De�nition 2.12. [22] Let(X,�, p) be an ordered partial metric space and T : X → X be a mapping. Also
let Y = {(x, y) ∈ X ×X : x � y, p(Tx, Ty) > 0}. We say that T is an ordered F -contraction if F ∈ F and
there exists τ > 0 such that for all (x, y) ∈ Y , we have

τ + F (p(Tx, Ty)) ≤ F (p(x, y)). (2)
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Theorem 2.13. [22] Let (X,�) be partial ordered set and suppose that there exists a partial metric space
on X such that (X, p) is a complete partial metric space. Suppose T and g are continuous self F -contraction
mappings on X, T (X) ⊆ g(X), T is monotone g-non decreasing mapping and

τ + F (p(Tx, Ty)) ≤ F (M(x, y)),

where

M(x, y) = max

{
p(gx, gy), p(gx, Tx), p(gy, Ty),

1

2
[p(gx, Ty) + p(gy, Tx)]

}
,

for all x, y ∈ X for which gx and gy are comparable and τ > 0. If there exists x0 ∈ X such that gx0 � Tx0
and T and g are compatible, then T and g have a coincident point.

In this paper, we develop a �xed point theorem for multi-valued α-F contraction mappings in partial
metric spaces. We also construct a �xed theorem for multi-valued Hardy-Rogers type F -contraction in
ordered partial metric spaces. Besides, we provided examples of the use of theorems and an application to
integral equations.

3. Main Results

3.1. Fixed point theorem for multi-valued α-F -contraction mappings in partial metric spaces

We start our �rst results by slightly modifying the De�nition 2.9 given in [38].

De�nition 3.1. Let α : X × X → [0,∞) be a function in a partial metric space (X, p). A mapping
T : X → CBp(X) is said to be strictly α-admissible if for each x ∈ X and y ∈ Tx such that α(x, y) > 1 we
have α(y, z) > 1 for each z ∈ Ty.

From Ali and Kamran [3], we get the following de�nition of a α-F - contraction mapping:

De�nition 3.2. [3] Let (X, d) be a metric space and α : X ×X → [0,∞) be function. A mapping T : X →
CB(X) is α-F -contraction if there exists a continuous function F in F and τ > 0 such that

τ + F (α(x, y)H(Tx, Ty)) ≤ F (M(x, y)),

for each x, y ∈ X, whenever min{α(x, y)H(Tx, Ty),M(x, y)} > 0, where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
+ Ld(y, Tx)

and L ≥ 0.

We consider the following theorem by Ali and Kamran [3]

Theorem 3.3. [3] Let (X, d) be a complete metric space and let T : X → CB(X) be an α-F -contraction
satisfying the following conditions:

(i) T is strictly α-admissible mapping;
(ii) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) > 1;

(iii) for any sequence {xn} ⊆ X such that xn → x as n→∞ and α(xn, xn+1) > 1 for each n ∈ N, we have
α(xn, x) > 1 for each n ∈ N.

Then T has a �xed point.

In order to develop our main result, we modify De�nition 3.2 as follows:
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De�nition 3.4. Let (X, p) be a partial metric space and α : X × X → [0,∞) be a function. A mapping
T : X → CBp(X) is an α-F -contraction if there exists a continuous function F ∈ F and τ > 0 such that

τ + F (α(x, y)Hp(Tx, Ty)) ≤ F (M(x, y)), (3)

for each x, y ∈ X, whenever min{α(x, y)Hp(Tx, Ty),M(x, y)} > 0 and q, r ≥ 2,
where

M(x, y) = max

{
p(x, y),

p(x, Tx) + p(y, Ty)

q
,
p(x, Ty) + p(y, Tx)

r

}
.

By extending Theorem 3.3, we prove following results:

Theorem 3.5. Let (X, p) be a complete partial metric space, and T : X → CBp(X) be an α-F -contraction
satisfying the following conditions:

(i) T is strictly α-admissible mapping;
(ii) there exists x0 ∈ X and x1 ∈ Tx0 with α(x0, x1) > 1;

(iii) for any sequence {xn} ⊆ X such that xn → x as n→∞ and α(xn, xn+1) > 1 for each n ∈ N, we have
α(xn, x) > 1 for each n ∈ N.

Then there exists x∗ ∈ X such that Tx∗ = x∗ and p(x∗, x∗) = 0. x∗ is a �xed point of T .

Proof. Let x0 ∈ X be an arbitrary point and choose x1 ∈ Tx0 such that α(x0, x1) > 1. If x1 ∈ Tx1, then x1
is a �xed point of T and the proof is completed.

If however x1 /∈ Tx1, then apply (3) with x = x0 and y = x1 as follows:

τ + F
(
α(x0, x1)Hp(Tx0, Tx1)

)
≤ F [max{M(x0, x1)}], (4)

where

M(x0, x1)

= max

{
p(x0, x1),

p(x0, Tx0) + p(x1, Tx1)

2
,
p(x0, Tx1) + p(x1, Tx0)

2

}
≤ max

{
p(x0, x1),

p(x0, x1) + p(x1, Tx1)

q
,
p(x0, Tx1) + p(x1, x1)

r

}
because x1 ∈ Tx0, x2 ∈ Tx1, we have

≤ max

{
p(x0, x1),

p(x0, x1) + p(x1, x2)

q
,
p(x0, x2) + p(x1, x1)

r

}
,

by P4 of De�nition 2.1, we have

≤ max

{
p(x0, x1),

p(x0, x1) + p(x1, Tx1)

q
,

p(x0, x1) + p(x1, x2)− p(x1, x1) + p(x1, x1)

r

}
,

using P1 and (1) in above inequality, we get

≤ max

{
p(x0, x1),

p(x0, x1) + p(x1, x2)

q
,

p(x0, x1) + p(x1, x2)

r

}
,

⇒M(x0, x1) ≤ p(x0, x1). (5)
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We substitute (5) into (4) and get

τ + F
(
α(x0, x1)Hp(Tx0, Tx1)

)
≤ F

(
p(x0, x1)

)
. (6)

As α(x0, x1) > 1, by Lemma (2.5) there exists x2 ∈ Tx1 such that

p(x1, x2) ≤ α(x0, x1)Hp(Tx0, Tx1). (7)

As F is an increasing function we have

F
(
p(x1, x2)

)
≤ F

(
α(x0, x1)Hp(Tx0, Tx1)

)
. (8)

Inserting (7) in (6) we get
τ + F

(
p(x1, x2)

)
≤ F

(
p(x0, x1)

)
. (9)

Since T is strictly α- admissible, according to De�nition (3.1), we have α(x0, x1) > 1 ⇒ α(x1, x2) > 1.
If x2 ∈ Tx2, then x2 is a �xed point and the proof is completed. Suppose x2 /∈ Tx2. We apply Equation (3)
with x = x1, y = x2 and get

τ + F
(
α(x1, x2)Hp(Tx1, Tx2)

)
≤ F [max{M(x1, x2)}], (10)

where

M(x1, x2)

= max

{
p(x1, x2),

p(x1, Tx1) + p(x2, Tx2)

q
,
p(x1, Tx2) + p(x2, Tx1)

r

}
⇒M(x1,x2) ≤ p(x1, x2). (11)

On applying (11) to (10) and get

τ + F
(
α(x1, x2)Hp(Tx1, Tx2)

)
≤ F

(
p(x1, x2)

)
. (12)

As α(x1, x2) > 1, by Lemma (2.5) there exists x3 ∈ Tx2 such that

p(x2, x3) ≤ α(x1, x2)Hp(Tx1, Tx2). (13)

F is an increasing function, therefore

F
(
p(x2, x3)

)
≤ F

(
α(x1, x2)Hp(Tx1, Tx2)

)
. (14)

On applying (14) to (12), we get
τ + F (p(x2, x3)) ≤ F

(
p(x1, x2)

)
. (15)

Therefore (15) becomes

τ + F (p(x2, x3)) ≤ F (p(x1, x2))

⇒ F (p(x2, x3)) ≤ F (p(x1, x2))− τ
⇒ F (p(x2, x3)) ≤ F (p(x0, x1))− 2τ, by (9). (16)

Continuing in the same manner, we form a sequence {xn} which reaches one the following scenarios. Either
xn ∈ Txn for some n ∈ N. In this case, xn is the �xed point and the proof is completed.

Otherwise, we have for all n ∈ N, xn /∈ Txn, xn ∈ Txn−1,
α(xn−1, xn) > 1 and

F
(
p(xn, xn+1)

)
≤ F

(
p(x0, x1)

)
− nτ. (17)
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We determine the limit n→∞ of (17) and get

lim
n→∞

F
(
p(xn, xn+1)

)
= −∞.

By condition (F2), this implies
lim
n→∞

p(xn, xn+1) = 0. (18)

Let αn = p(xn, xn+1) for each n ∈ N. By condition (F3), there exist k ∈ (0, 1) and such that

lim
n→∞

αknF (αn).

From (17) we have
αknF (αn)− αknF (α0) ≤ −nαknτ < 0 for each n ∈ N. (19)

Letting n→∞ in (19) we get
lim
n→∞

nαkn = 0. (20)

This implies there exists n1 ∈ N such that nαkn < 1 for all n > n1. Therefore we have

αn <
1

n1/k
. (21)

We now show that {xn} is a p-Cauchy sequence. Consider m,n ∈ N,m < n < n1. By P3 of De�nition 2.1,
we have

p(xm, xn) ≤
n−1∑
i=m

p(xi, xi+1)−
n−1∑

i=m+1

p(xi, xi)

≤
n−1∑
i=m

p(xi, xi+1)

≤
∞∑
i=m

p(xi, xi+1)

=
∞∑
i=m

αi

≤
∞∑
i=m

1

i1/k
, from (21).

The series
∑∞

i=m

1

i1/k
converges as it is a p-series with an exponent greater than one. This implies limm,n→∞ p(xm, xn) =

0. This makes {xn} a Cauchy sequence by (ii) of De�nition (2.3).
As (X, p) is complete, there exists x? ∈ X such that xn → x?. By (18), this means p(x?, x?) = 0. Also

by condition (iii) of Theorem (3.5), we have α(xn, x
?) > 1 for all n ∈ N.

We claim that x? is a �xed point of T , that is p(x?, Tx?) = p(x?, x?) = 0. Suppose p(x?, Tx?) > 0. Then
there exists n0 ∈ N such that p(xn, Tx?) > 0 for all n > n0. By (3.4), for all n > n0 and q, r ≥ 0, we have

τ + F
(
p(xn+1, Tx

?)
)

≤ τ + α(xn, x
?)F (Hp(Txn, Tx

?))

≤ F
(

max

{
p(xn, x

?),
p(xn, Txn) + p(x?, Tx?)

q
,
p(xn, Tx

?) + p(x?, Txn)

r

})
(22)

We let n→∞ in (22) and get
τ + F

(
p(x?, Tx?)

)
≤ F

(
p(x?, x?)

)
. (23)

since τ > 0, the above inequality yield a contradiction. Hence p(x?, Tx?) = 0.
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Example 3.6. Consider the partial metric space (X, p) where X = {0, 1, 2, . . . } and p(x, y) = |x − y| +
max{x, y} for all x, y ∈ X. De�ne the multivalued function T : X → CBp(X) as

Tx =


{0, 1} for 0 ≤ x ≤ 1;

{x− 1, x} for x > 1.

Let α : X ×X → [0,∞) be de�ned as

α(x, y) =


2 if x, y ∈ {0, 1};
1
2 if x, y > 1;
0 otherwise.

Now, we show that T is strictly α-admissible with the following cases:
Case 1 Assume that x = x0 and y = x1. Let x0 = 0 and x1 = 1, then Â x1 ∈ Tx0 = {0, 1}, such that

α(x0, x1) > 1. Also we choose x2 such that x2 ∈ Tx1, x2 = 0 ∈ Tx1 = {0, 1}, thus α(x1, x2) > 1.
Case 2 We de�ne F (x) = x+ ln(x), x ∈ (0,∞). Under this F , the Equation (4) simpli�es to

α(x, y)Hp(Tx, Ty)

M(x, y)
eα(x,y)Hp(Tx,Ty)−M(x,y)) ≤ e−τ . (24)

We now calculate Hp(Tx, Ty) for x > y > 1 and q, r ≥ 2.

Tx = {x− 1, x}, T y = {y − 1, y};
p(x− 1, y − 1) = 2x− y − 1, p(x− 1, y) = 2x− y − 2

p(x, y − 1) = 2x− y + 1, p(x, y) = 2x− y.

p(x− 1, T y) = min{p(x− 1, a), a ∈ Ty}
= min{p(x− 1, y − 1), p(x− 1, y)}
= min{2x− y − 1, 2x− y − 2}
= 2x− y − 2.

In the same manner we get

p(x, Ty) = 2x− y, p(y − 1, Tx) = 2x− y − 1, p(y, Tx) = 2x− y − 2.

δp(Tx, Ty) = max{p(a, Ty), a ∈ Tx}
= max{p(x− 1, T y), p(x, Ty)}
= max{2x− y − 2, 2x− y}
= 2x− y.

Similarly
δp(Ty, Tx) = 2x− y − 1.

Hence

Hp(Tx, Ty) = max{δp(Tx, Ty), δp(Ty, Tx)}
= max{2x− y, 2x− y − 1}
= 2x− y.
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We note that for x > y > 1, min{α(x, y)H(Tx, Ty),M(x, y)} > 0 and M(x, y) ≥ p(x, y) = 2x− y. Hence (4)
becomes

1

2
· 2x− y
M(x, y)

e
1
2
(2x−y)−M(x,y) ≤ 1

2
· 2x− y

2x− y
e

1
2
(2x−y)−(2x−y)

≤ 1

2
e−3/2, because x > y > 1,

≤ e−τ for τ ≥ 3

2
.

for τ ≥ 3
2 .

This shows that T is a multivalued α-F -contraction with contractive factor τ = 3
2 and F (a) = ln a + a.

For x0 = 0 and x1 ∈ Tx0 = {0, 1}, we obtain α(0, 1) > 1. Furthermore, we see that T is strictly α- admissible
map and for any sequences {xn} ⊆ X such that xn → x as n→∞ and α(xn, xn+1) > 1 for each n ∈ N, we
have α(xn, x) > 1 for each n ∈ N. Therefore, by Theorem 3.5, T has a �xed point in X.

3.2. Fixed Point Theorem for Multi-valued F -contraction mappings in Ordered Partial metric space

In order to prove our second main result, we �rst de�ne an ordered relation as follows.

De�nition 3.7. [9] Let A and B be two non-empty subsets of (X,�), the relation between A and B are
denoted and de�ned as follows:

(1) A ≺1 B: if for every a ∈ A there exists b ∈ B such that a � b,
(2) A ≺2 B: if for every b ∈ B there exists a ∈ A we have a � b,
(3) A ≺3 B: if A ≺1 B and A ≺2 B.

Theorem 3.8. [40] Let (X, d,�) be an ordered complete metric space and Let T : X → CB(X). Assume
that there exists F ∈ F and τ ∈ R+ such that

2τ + F
(
H(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty) +

δd(x, Ty) + Ld(y, Tx),

for all comparable x, y ∈ X with Tx 6= Ty, where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1 and γ 6= 1. If the
following condition are satis�ed:

(i) there exists x0 ∈ X such that {x0} ≺1 Tx0;

(ii) for x, y ∈ X, x � y implies Tx ≺2 Ty ;

(iii) X is regular;

then T has a �xed point.

Kumar [22] extended the results due to Durmaz et al. [13] where he introduced the following de�nition
and theorem on ordered partial metric spaces using two compatible mappings:

De�nition 3.9. [22] Let(X,�, p) be an ordered partial metric space and T : X → X be a mapping. Also let
Y = {(x, y) ∈ X ×X : x � y, p(Tx, Ty) > 0}. We say that T is an ordered F -contraction if F ∈ F and there
exists τ > 0 such that for all (x, y) ∈ Y , we have

τ + F (p(Tx, Ty)) ≤ F (p(x, y)). (25)



L. Wangwe, S. Kumar, Results in Nonlinear Anal. 4 (2021), 130�148 140

Theorem 3.10. [22] Let (X,�) be partial ordered set and suppose that there exists a partial metric space
on X such that (X, p) is a complete partial metric space. Suppose T and g are continuous self F -contraction
mappings on X, T (X) ⊆ g(X), T is monotone g-non decreasing mapping and

τ + F (p(Tx, Ty)) ≤ F (M(x, y)),

where

M(x, y) = max

{
p(gx, gy), p(gx, Tx), p(gy, Ty),

1

2
[p(gx, Ty) + p(gy, Tx)]

}
,

for all x, y ∈ X for which gx and gy are comparable and τ > 0. If there exists x0 ∈ X such that gx0 � Tx0
and T and g are compatible, then T and g have a coincident point.

We give the extendend version of De�nition 3.9 to an ordered multi-valued Hardy-Rogers F -contraction
in partial metric space as follows:

De�nition 3.11. Let (X,�, p) be an ordered partial metric space and T : X → CBp(X) be a multi-valued
mapping. We say that T is an ordered multi-valued Hardy-Rogers F -contraction if F ∈ F and there exists
τ > 0 such that for all x, y ∈ X, we have

2τ + F
(
Hp(Tx, Ty)

)
≤ F

(
M(x, y)

)
, (26)

where
M(x, y) = αp(x, y) + βp(x, Tx) + γp(y, Ty) + δp(x, Ty) + Lp(y, Tx)

for x � y ⇔ Tx � Ty, α, β, γ, δ, L ≥ 0, α+ β + γ + δ = 1 and γ 6= 1.

By extending Theorem 3.8, we prove following theorem:

Theorem 3.12. Let (X,�) be a partial ordered set and suppose that there exists a partial metric p such that
(X, p) is a complete partial metric space. Let T : X → CBp(X) be a multi-valued map. Assume that there
exists F ∈ F and τ ∈ R+ such that T is a multi-valued Hardy-Rogers-type F -contraction which satisfy the
following conditions:

(i) there exists x0 ∈ X such that x0 ≺1 Tx0;
(ii) for x, y ∈ X, x � y =⇒ Tx ≺2 Ty ;

(iii) if xn → x is a non decreasing sequence in X, for all n and

2τ + F (Hp(Tx, Ty)) ≤ F (M(x, y)), (27)

where
M(x, y) = αp(x, y) + βp(x, Tx) + γp(y, Ty) + δp(x, Ty) + Lp(y, Tx)

for x, y ∈ X, τ > 0, α, β, γ, δ, L ≥ 0, α+ β + γ + δ = 1 and γ 6= 1. Then T has a �xed point.

Proof. From assumption (i), there exists x0 ∈ X such that x0 ≺1 Tx0. Choosing x1 ∈ Tx0, by(ii) we have
x0 � x1 ⇒ Tx0 ≺2 Tx1. If x1 ∈ Tx1 then x1 is a �xed point of T and we have completed our proof.

Suppose x1 /∈ Tx1, then Tx0 6= Tx1. Since F is continuous from the right, there exist a real number
h > 1 such that

F (hHp(Tx0, Tx1)) < F (Hp(Tx0, Tx1)) + τ.

Now, from F (p(x1, Tx1)) < F (Hp(Tx0, Tx1)) and Tx0 ≺2 Tx1, by this case we choose x2 ∈ Tx1 such that
F (p(x1, x2)) ≤ F (Hp(Tx0, Tx1)) and by use of Lemma 2.5 as a results, we get

p(x1, x2) ≤ hHp(Tx0, Tx1) < Hp(Tx0, Tx1) + τ,

F (p(x1, x2)) ≤ F (hHp(Tx0, Tx1)) < F (Hp(Tx0, Tx1)) + τ,
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we apply (27) with x = x0, y = x1 to get

2τ + F (p(x1, x2)) ≤ 2τ + F (Hp(Tx0, Tx1)) + τ,

≤ F
(
M(x0, x1)

)
+ τ,

= F
(
αp(x0, x1) + βp(x0, Tx0) + γp(x1, Tx1),

+δp(x0, Tx1) + Lp(x1, Tx0)
)

+ τ,

from x1 ∈ Tx0, x2 ∈ Tx1, we have

≤ F
(
αp(x0, x1),+βp(x0, x1) + γp(x1, x2),

+δp(x0, x2) + Lp(x0, x1)
)

+ τ,

by P4 of De�nition 2.1, we get

≤ F
(
αp(x0, x1) + βp(x0, x1) + γp(x1, x2),

+δp(x0, x1) + δp(x1, x2)− δp(x1, x1) + Lp(x1, x1)
)

+ τ

= F
(
(α+ β + δ + L)p(x0, x1) + (γ + δ)p(x1, x2)

)
+τ.

using P1 and (1), we get

≤ F
(
αp(x0, x1) + βp(x0, x1) + γp(x1, x2),

+δp(x0, x1) + δp(x1, x2)
)

+ τ

= F
(
(α+ β + δ)p(x0, x1) + (γ + δ)p(x1, x2)

)
+τ.

τ + F (p(x1, x2)) ≤ F
(
(α+ β + δ)p(x0, x1) + (γ + δ)p(x1, x2)

)
. (28)

As F is an increasing function, by (F1) (28) implies

⇒ F (p(x1, x2)) < F
(
(α+ β + δ)p(x0, x1) + (γ + δ)p(x1, x2)

)
⇒ p(x1, x2) < (α+ β + δ)p(x0, x1) + (γ + δ)p(x1, x2)

⇒ (1− γ − δ)p(x1, x2) < (α+ β + δ)p(x0, x1). (29)

From the assumption we have

α+ β + γ + δ = 1, L = 0 implying 1− γ − δ = α+ β + δ.

Hence, (29) implies
p(x1, x2) < p(x0, x1). (30)

Using (30) in (28) we get
F
(
p(x1, x2)

)
≤ F

(
p(x0, x1)

)
− τ. (31)

If x2 ∈ Tx2 then x2 is a �xed point of T and the proof is completed. However, suppose x2 /∈ Tx2. As
Tx0 ≺2 Tx1, x1 ∈ Tx0 and x2 ∈ Tx1, we have x1 � x2 ⇒ Tx1 ≺2 Tx2. Let us choose x3 ∈ Tx2. Therefore,
by Lemma 2.5, we get

p(x2, x3) ≤ hHp(Tx1, Tx2) < Hp(Tx1, Tx2) + τ.

F (p(x2, x3)) ≤ F (hHp(Tx1, Tx2)) < F (Hp(Tx1, Tx2)) + τ.
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We apply (27) with x = x1, y = x2, we get

2τ + F (p(x2, x3)) ≤ 2τ + F (Hp(Tx1, Tx2)) + τ,

≤ F
(
M(x1, x2)

)
+ τ,

= F
(
αp(x1, x2),+βp(x1, Tx1) + γp(x2, Tx2),

+δp(x1, Tx2) + Lp(x2, Tx1)
)

+ τ,

Similar, one obtains,

τ + F
(
p(x2, x3)

)
≤

(
(α+ β + δ)p(x1, x2) + (γ + δ)p(x2, x3)

)
As F is an increasing function, by (F1), we get

p(x2, x3) < p(x1, x2). (32)

Using (32) in (28) and (31) we get

F
(
p(x2, x3)

)
≤ F

(
p(x1, x2)

)
− τ ≤ F

(
p(x0, x1)

)
− 2τ. (33)

Continuing in the same manner we get the sequence {xn} with x1 ≺ x2 ≺ x3 . . . . If xn ∈ Txn for some
n ∈ N, then xn is a �xed point of T and the proof is completed. Suppose xn /∈ Txn for all x ∈ N. In this
case we have

F
(
p(xn, xn+1)

)
≤ F

(
p(x0, x1)

)
− nτ. (34)

We notice that (34) is identical to (17). Next, proceeding as in the proof of Theorem 3.5, we obtained that
{xn} is Cauchy sequence. Also, since (X, p) is a complete partial metric space, there is x? ∈ X such that
xn → x?, and p(x?, x?) = 0.

We claim that x? is a �xed point of T . We do this by showing that p(x?, Tx?) = p(x?, x?) = 0. Suppose
p(x?, Tx?) > 0. Then there exists some n0 ∈ N such that p(xn, Tx?) > 0 for all n > n0. By (25) we have

2τ + F
(
p(xn+1, Tx

?)
)
≤ 2τ + F

(
Hp(Txn, Tx

?)
)

+ τ

≤ F
(
M(xn, x

?)
)

= F
(
αp(xn, x

?) + βp(xn, Txn)

+ γp(x?, Tx?) + δ
(
p(xn, Tx

?) + p(x?, Txn)
)

+ Lp(x∗, Txn) + τ. (35)

Taking n→∞ in (35) and applying the fact that F is an increasing function, we get

2τ + F
(
p(x?,Tx?)

)
≤ F

(
αp(x?, x?) + βp(x?, Tx?) + γp(x?, Tx?) + 2δp(x?, Tx?)

+ Lp(x∗, Tx∗)
)

+ τ,

≤ F
(
(α+ β + γ + δ + L)p(x?, Tx?)

)
+ τ,

2τ + F
(
p(x?, Tx?) ≤ F

(
p(x?, Tx?)

)
+ τ,

2τ + F
(
p(x?, Tx?) ≤ F

(
p(x?, Tx?)

)
+ τ,

F
(
p(x?, Tx?) ≤ F

(
p(x?, Tx?)

)
− τ.

Since τ > 0, the above inequality yield a contradiction. Hence p(x?, Tx?) = 0 making x? a �xed point of T .
The proof is completed.

Now, we give an example to illustrate the use of Theorem 3.12.
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Example 3.13. Consider partial metric spaces (X, p), where set X = {0, 1, 2, ...} and

p(x, y) =
1

4
|x− y|+ 1

2
max{x, y}.

for all x, y ∈ X. Let (X,�) be partial ordered set where

y � x =⇒ x ≥ y.

De�ne the multivalued function Â T : X → CBp(X) as

Tx =


{x− 2, x− 1}, for x ≥ 2,

{0, x+ 1}, for x ∈ {0, 1}.

We note that x ≥ 2 , x ≺1 Tx, x � y =⇒ Tx ≺2 Ty and x /∈ Tx. We de�ne F ∈ F as F (a) = ln a + a.
The condition (27) becomes

Hp(Tx, Ty)

M(x, y)
eHp(Tx,Ty)−M(x,y) ≤ e−2τ . (36)

We now calculate Hp(Tx, Ty) for x > y ≥ 2.

Tx = {x− 2, x− 1, }, Ty = {y − 2, y − 1, }.

p(x− 1, y − 2) =
3x− y

4
− 1

4
, p(x− 1, y − 1) =

3x− y
4
− 1

2
.

p(x− 2, y − 2) =
3x− y

4
− 1, p(x− 2, y − 1) =

3x− y
4
− 5

4
.

p(x− 2, T y) = min{p(x− 2, a); a ∈ Ty}
= min{p(x− 2, y − 1), p(x− 2, y − 2)},

= min{3x− y
4
− 1,

3x− y
4
− 5

4
},

=
3x− y

4
− 5

4
.

In a similar manner we calculate

p(x− 1, T y) =
3x− y

4
− 1

2
.

p(x− 2, Tx) =
3x− y

4
− 1.

p(y − 1, Tx) =
3x− y

4
− 5

2
.

δp(Tx, Ty) = max{p(a, Ty); a ∈ Tx}
= max{p(x− 2, Ty), p(x− 1, T y)},

= max{3x− y
4
− 5

4
,
3x− y

4
− 1

2
},

=
3x− y

4
− 1

2
.

Similarly

δp(Ty, Tx) = max{p(a, Tx); a ∈ Ty}
= max{p(y − 2, Tx), p(y − 1, Tx)},

= max{3x− y
4
− 1,

3x− y
4
− 5

4
},

=
3x− y

4
− 1.
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Hp(Tx, Ty) = max{δp(Tx, Ty), δp(Ty, Tx)},

= max

{
3x− y

4
− 1

2
,
3x− y

4
− 1

}
,

=
3x− y

4
− 1

2
.

We note that

M(x, y) = αp(x, y) = p(x, y) =
3x− y

4
.

Applying to (36) we get

3x− y − 2

3x− y
e−

1
2 ≤ e−2τ .

which is true for τ = 1
4 . The mapping has a �xed point at x = 0. This shows that T is a multivalued

Hardy-Rogers-type F -contraction with contractive factor τ . Hence, satisfy Theorem 3.12.

4. Some Applications

In this section, we will provide an application of our theorem for Hardy Rogers type contraction in
ordered partial metric spaces. We will use Volterra type integral equation to illustrate the results. Consider
the Volterra type integral equation :

x(t) = g(t) +

∫ t

0
f(t, s, x(s))ds, t ∈ [0,K], (37)

where K > 0. Let X = C([0,K],R) be the space of all continuous functions de�ned on [0,K]. Notice that
(C([0,K]) endowed with partial metric.

p(x, y) = ‖x− y‖∞ = max
t∈[0,K]

|x(t)− y(t)|, (38)

is a complete partial metric space and X can be equipped with the partial order 4 given by x, y ∈ X,
(x � y) =⇒ (x(t) 4 y(t) and ‖x‖∞, ‖y‖∞ ≤ 1), or (x(t) = y(t)) for all t ∈ [0,K]. It was shown by Nieto
and Rodrigurz-Lopez [29] that (X,4) is regular. From Equation 37, x is the solution of x

′
(t) = f(t, y(s))

satisfying initial condition x(t0) = x0 if and only if

x(t) = g(t) +

∫ t

0
f(t, s, x(s))ds, t ∈ [0,K]. (39)

We consider Volterra integral equation as {
x

′
(t) = f(t, x(s)),

x(t0) = x0.

Equation (39) may be formulated as a �xed point equation

x = Tx.

Let << be a partial order relation on R. De�ne a mapping T : X → X Â by

Tx(t) = g(t) +

∫ t

0
f(t, s, x(s))ds, t ∈ [0,K]. (40)

Theorem 4.1. Let X= C([0,K]× R,R) for all value x, y ∈ X ;
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(i) f(t, s, x(s)) : R→ R is increasing for all t ∈ [0,K] and for x, y ∈ X, x ≺ y ⇔ Tx ≺1 Ty;
(ii) there exists x0 ∈ X such that x0 ≺1 Tx0;

x0(t) ≺1 g(t) +

∫ t

0
f(t, s, x(s))ds, t ∈ [0,K] :

(iii) there exist τ ∈ [1,∞] such that

|f(t, s, x(s))− f(t, s, y(s))| ≤ L(t, s)|x(s)− y(s)|,

where L(t, s) = ατe−2τ , for all t ∈ [0,K] and x, y ∈ R with x ≺ y.
(iv) if xn → x is a non decreasing sequence in X, for all n and

2τ + F (Hp(Tx, Ty)) ≤ F (M(x, y)), (41)

where
M(x, y) = αp(x, y) + βp(x, Tx) + γp(y, Ty) + δp(x, Ty) + Lp(y, Tx)

for x, y ∈ X, τ > 0, α, β, δ ≤, L ≥ 0, α + β + γ + 2δ = 1 and γ 6= 1. Then T has a �xed point. Therefore
Equation (37) has at least one �xed point x ∈ X.

Proof : Using (i), let K be a kernel function on G = [0,K] × [0,K] and is increasing on G. Then is
bounded function on G. For t, s ∈ [0,K], where K : [0,K]× [0,K]×R→ R and f(t), x(s), y(s) : [0,K]→ R
are continuous functions. Hence x ≺ y ⇔ Tx ≺2 Ty. From (ii) take x0 ∈ X as an initial point on [0,K]
we note that there is point x∗ which is the limit of iterative sequence (x0, x1, x2, x3, ...xn+1) where x0 is any
continuous function on X and for (n = 0, 1, 2, ...), we have

xn+1(t) = g(t) +

∫ t

0
f(t, s, x(s))ds, t ∈ [0,K].

Suppose we start with x0 = 1 = g(t) we get the following iteration of a sequence

x1(t) = 1 +

∫ t

t0

1.ds = 1 + t,

x2(t) = 1 +

∫ t

0
x1(s)ds = 1 + t+

t2

2
,

x3(t) = 1 +

∫ t

0
x2(s)ds = 1 + t+

t2

2
+
t3

6
,

... = ...

xn(t) = 1 +

∫ t

0
xn−1(s)ds =

n∑
n=0

tn

n!
.

The limit of this sequence
lim
n→∞

xn(t) = et, ∀ t ∈ [0,K].

For arbitrary x ∈ X, de�ne |x|τ = max
t∈[0,K]

{|x|e−τt}, where τ ≥ 1 is taken randomly. Since ‖.‖τ is a Banach

space norm equivalent to maximum norm and (X, ‖.‖τ ) endowed with a metric dτ given as below by O'Regan
and Petrusel [30]. Also one can see [37, 40]

dτ (x, y) = max
t∈[0,K]

{|x(t)− y(t)|}e−τt, (42)

for all x, y ∈ X. Next, assume that X endowed with partial metric de�ned by Paesano and Vetro [33] as
follows:

pτ (x, y) =

{
dτ (x, y) if ‖x‖∞, ‖y‖∞ ≤ 1,
dτ (x, y) + τ otherwise.
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Therefore (X, p) is 0 - complete partial metric. Also

pτ (x, y) =

{
dτ (x, y) if ‖x‖∞, ‖y‖∞ ≤ 1 or (‖y‖∞ > 1),
dτ (x, y) + τ otherwise,

and consequently (X, psτ ) is 0 - complete. Consider partial order de�ned on X by x, y ∈ C([0,K] × Rn,R),
x � y if and only if x(t) � y(t), for t ∈ [0,K]. Then (X, ‖.‖τ ),�) is complete partial ordered metric space
and for any increasing sequence {xn} in X, it has the limit x∗ ∈ X, we have xn � x∗ for any t ∈ [0,K].

Assume that the initial condition of Equation (27) are x0(t) = x0 for t ∈ [0,K] has a unique solution.
The solution of Volterra equation is the �xed point of T . Thus, (i) and (ii) satis�ed. From condition (iv) the
operator T is surely increasing. Now we have to justify condition of Equation (40) by comparing Tx ≺2 Ty
and x, y ∈ X such that x � y. On using condition (i) and (iii), we reach on the following results

|Tx(t)− Ty(t)| = |
∫ t

0
f(t, s, x(s)ds)−

∫ t

0
f(t, s, y(s)ds|

≤
∫ t

0
|f(t, s, x(s))− f(t, s, y(s))|ds

≤ ατe−2τ
∫ t

0
|x(s)− y(s)|ds

≤ ατe−2τ
∫ t

0
|x(s)− y(s)|e−τseτsds

≤ ατe−2τ
∫ t

0
eτs|x(s)− y(s)|e−τsds

≤ ατe−2τ

(∫ t

0
eτsds

)
|x(s)− y(s)|e−τs

≤ ατe−2τ

(∫ t

0
eτsds

)
‖x(s)− y(s)‖τ

≤ ατe−2τ
eτt

τ
‖x(s)− y(s)‖τ ,

≤ αe−2τ‖x(s)− y(s)‖τ .

After all, since x, y ∈ X such that x 4 y, from ‖x‖τ , ‖y‖τ ≤ 1, we have

|Tx(t)− Ty(t)|e−τt ≤ αe−2τ‖x− y‖τ ,

or equivalently,

pτ (Tx, Ty) ≤ αe−2τpτ (x, y).

Taking naturai logarithm to both sides, we obtain

ln(pτ (Tx, Ty)) ≤ ln(αe−2τpτ (x, y)),

which is equivalently,

2τ + F (pτ (Tx, Ty)) ≤ F (αpτ (x, y)).

for α = 1, we have

2τ + F (pτ (Tx, Ty)) ≤ F (pτ (x, y)).

Through observation for a function F : R+ → R de�ned by F (a) = ln a, for all x ∈ X, belong to F and
so we deduced that operator T satis�es condition of Equation (39) with α = 1 and β = γ = δ = 0, L = 0.
Hence by Theorem 4.1, we obtained that operator T has a �xed point x∗ ∈ X, which is the solution of
Volterra integral Equation (37).
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5. Conclusion

The main contribution of this study to �xed point theory is the �xed point for multivalued result given in
Theorem 3.5, Theorem 3.12 and Theorem Theorem 4.1. These theorems provides the �xed point conditions
for a substantial class of Hady-Rogers contraction mappings on various abstract spaces.

We prove a �xed point theorem for multi-valued mapping using α-F -contraction in partial metric spaces.
Furthermore, a �xed point theorem is proved for F -Hardy-Rogers multi-valued mappings in ordered partial
metric spaces. Speci�cally, this paper motivated by the works by Ali and Kamran [3], Sgroi and Vetro [40]
and Kumar [22]. We also provided illustrative examples and an application to integral equations. which
generalizes some well-known results in the literature. These results have some applications in many areas of
applied mathematics, especially in the Volterra type integral equation.

Acknowledgement: The authors are thankful to the learned reviewers for their valuable comments.
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