
Results in Nonlinear Analysis 8 (2025) No. 4, 140–158
https://doi.org/10.31838/rna/2025.08.04.012

 
 

Available online at www.nonlinear-analysis.com

Received December 9, 2025; Accepted January 23, 2026; Online February 18, 2026

An efficient semi-analytical method for solving 
fractional differential equations via conformable 
sense with applications in physics and engineering
Shumoua F. Alrzqi1, Fatimah A. Alrawajeh2, Hany N. Hassan3

1General Studies Department, Jubail Industrial College, Jubail Industrial City, Saudi Arabia; 2Department of Mathematics, College of Science, 
Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; 3Department of Basic Sciences, Deanship of Preparatory 
Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia

Abstract
The aim of the study is to present an efficient semi-analytical technique for solving fractional differen-
tial equations (FDEs), the conformable Temimi-Ansari method (CTAM). To evaluate the performance 
of the method, six nonlinear FDEs are investigated: the Riccati differential equation, the Painlevé 
equation, the Bernoulli differential equation, the Liénard equation, and the time-fractional Fisher’s 
equation. The accuracy and efficiency of CTAM are assessed through the computation of error norms. 
To demonstrate the validity and behavior of the obtained solutions, various graphical representations 
and tables are provided.
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1. Introduction

In recent years, there has been considerable interest in fractional calculus because of its effective-
ness in modeling diverse phenomena observed in numerous scientific and engineering applications.  
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This growing interest has resulted in significant advances in the development and application of frac-
tional differential equations (FDEs), which have been used to describe a wide range of phenomena in 
fields such as acoustics, electromagnetics, electrochemistry, engineering, physics, and materials sci-
ence, including properties that traditional calculus often cannot address [1–8]. Despite their versatility, 
analytical solutions to FDEs remain difficult to obtain due to their nonlinear terms. As a result, many 
researchers have developed semi-analytical approach to address these equations, which can produce 
accurate approximate solutions. Among the most often utilized methods are procedures such as the 
conformable fractional reduced differential transform (CFRDTM) [9], Homotopy analysis method [10],  
Picard method [11], conformable reduced differential transform method (CRDTM) [12], B-spline col-
location method [13], etc. Among these, the Temimi and Ansari Method (TAM) [14, 15], developed 
by Temimi and Ansari has demonstrated advantages due to its capability to address differential 
equations across both linear and nonlinear equations of an integer order. Compared to many other 
methods, TAM does not depend on additional parameters or limited assumptions whenever address-
ing nonlinear terms. The purpose of this study is to extend the applicability of the Temimi and Ansari 
Method (TAM) to nonlinear FDEs by using the conformable fractional operator. This modification 
enables the development of both approximate and semi-analytical solutions, providing an effective 
approach to addressing the challenges associated with such equations. To demonstrate the efficiency 
of the proposed method, we consider several fundamental FDEs. Among them is the Riccati equation, 
which has been extensively applied in diverse fields such as economics, physics, and epidemiology, 
highlighting versatility and utility in many scientific subjects [16]. We additionally investigate the 
Painlevé equations, which have an important role in simulating complex physical phenomena, such 
as simulations of electric fields in quantum gravity, and random matrix theory [17, 18]. Bernoulli’s 
equation plays a vital role in addressing force and energy-related problems that frequently arise 
in engineering. It forms the theoretical basis for hydraulic mechanics [19]. The Liénard equations 
are similarly important since they are used to simulate a wide range of dynamical phenomena that 
extend to fields such as biology, mechanics, electrical systems, mathematics, and engineering [20].  
We additionally investigate Fisher’s equation, which is widely utilized to describe the propagation of 
beneficial genes, as an example of FPDEs. It is essential for simulating phenomena including auto-
catalytic chemical reactions and Brownian motion [21, 22]. Considering these challenges, the main 
goal of this study is to provide an efficient semi-analytical technique that can address some of the 
limitations of current semi-analytical methods by handling significant classes of nonlinear FDEs that 
appear in physics and engineering. We intend to evaluate the performance of the proposed method in 
terms of accuracy, convergence, and computational efficiency by comparing it with exact solutions and 
with results previously reported in the literature.

The article has the following structure: The first section introduces and discusses the motivation 
for the investigation. The second section explores the definition and the primary properties of the con-
formable fractional derivative. In the third section, the essential concepts of the conformable Temimi-
Ansari Method (CTAM) are presented in terms of FDEs. The fourth section utilizes the presented 
method on several nonlinear FDEs and investigates the results obtained. Finally, the fifth section 
concludes with the study results.

2. Definition and Properties of the Conformable Fractional Derivative

Through the years, numerous definitions of fractional calculus have been proposed. Among them, the 
conformable fractional derivative was discovered as a powerful and practical tool. The conformable 
derivative preserves numerous fundamental properties of the classical derivative, such as linearity 
and the product, quotient, chain, and power rules, making it simpler to deal with both linear and 
nonlinear FDEs. For a wide range of physical models, the use of a conformable derivative is often 
combined with standard reductions such as travelling-wave transformations, which convert FDEs 
into nonlinear ODEs of integer order, making it ideal for nonlinear FDEs and the CTAM technique 
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developed in the current study [23, 24, 25]. This section clarifies the basic concepts and primary prop-
erties of conformable calculus, which serve as the theoretical basis for the method proposed in this 
study [26–28].

Definition 2.1. Let w : [ , )0 ¥ ®   be a function. The conformable fractional derivative of y of order 
d Î ( , ]0 1  at a point z > 0  is defined by [27, 26]:

( )( ) lim ( ) ( ) .d e
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Definition 2.2. Let y be a function that is differentiable up to order n at a point z > 0 . For any 
d n nÎ +( , ]1 , let édù denote the least integer not smaller than d. Then the conformable fractional deriv-
ative of y of order d is defined by [26]:
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Lemma 2.3. [26] Suppose y and f are both differentiable of order d at some point z > 0 , with d Î ( , ]0 1 .  
Then the following properties are satisfied:

(1) Linearity.   d d db g b g b g( ) , , .y F y F+ = + Î   where 

(2) Power Function Rule. d
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(5) Quotient Rule.   
d

d dz
z

z z z z
z

y
F

F y y F
F

( )
( )

( ) ( ) ( ) ( )
( ( ))

.æ

è
ç

ö

ø
÷ =

-
2

(6) Higher-Order Derivative. If y is differentiable at z, then d
dz z
z

zy y( ) ( ).= -1 d
d

Lemma 2.4. [26] If y is n-times differentiable at z > 0 , then for any d n nÎ +( , ]1 , the conformable 
fractional derivative satisfies:

d
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3. �The Proposed Method: Conformable Temimi-Ansari Method (CTAM) for Fractional  
Differential Equations

The conformable Temimi-Ansari method (CTAM) is a practical semi-analytical approach for nonlin-
ear FDEs, which eliminates the need for Lagrange multipliers and Adomian polynomials, compared 
to the variational iteration method and the Adomian decomposition method. As a result, the iterative 
process maintains a very simple mathematical structure while achieving accuracy better than vari-
ous methods, with a lower processing cost. To clarify the main concept of the technique, the following 
generic form of a non-homogeneous FDE is considered as follows [15, 29]

L N G( ( )) ( ( )) ( ) , ,u x u x x n n+ + = - < £0 1 a

with the boundary conditions 

( , ) ,u du
dx

= 0
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We start by employing the conformable fractional derivative, which is defined as 

 = =- -T u x T d
dt

u xa a1 1( ) ( ),  where T u x u xa
a

- =1 ( ) : ( )  using Lemma 2.3, property (6) with d = a, here 

u(x) is the unknown function, x is the independent variable, and t is the dependent variable. The general  
linear and nonlinear differential operators are denoted by N, and the boundary operator by B.  
The known continuous functions are expressed as G(x). In this context, the conformable formulation 
depends on the generic differential operator L. When necessary, linear and nonlinear variables can be 
combined to simulate more complicated systems. A detailed convergence analysis of the method has 
been presented in [15, 29, 30, 31], verifying its mathematical accuracy.

As a first step in the proposed method, the nonlinear term is isolated, yielding the following initial 
condition

T u x x u du
dx

a - = =1
0 0

0 0( ) ( ), ( , ) .G B 

By substituting the conformable fractional derivative and differentiating the left side with respect to 
t, the following expression is obtained

d
dx

u x T x u du
dx0

1
0

0 0( ) ( ( )), ( , ) .= =-a G B 

The initial solution u0 is obtained by integrating both sides of the equation with respect to t and  
solving the equation with the given conditions. The subsequent iteration is then derived by solving 
the following expression

T u x u x x u du
dx

a - + = =1
1 0 1

1 0( ) ( ( )) ( ), ( , ) .N G B 

By substituting the conformable fractional derivative and differentiating the left side with respect to 
t, followed by integrating both sides of the equation with respect to t and applying the conditions, the 
solution for u1 is obtained as follows

d
dx

u x T u x x u du
dx1

1
0 1

1 0( ) ( ( ( )) ( )), ( , ) .= - + =-a N G B 

This process leads to the solution of both linear and nonlinear equations through a straightforward 
iterative step, represented by un+1(x).

d
dx

u x T u x x u du
dxn n n

n
+

-
+

+= - + =1
1

1
1 0( ) ( ( ( )) ( )), ( , ) .a N G B 

In the CTAM approach, each un+1(x) represents an iterative solution to Eq. (1). The iterative method is 
formulated to be straightforward to implement, with each consecutive approximation improving the 
accuracy of its predecessor. As iterations increase, the semi-analytical solution converges to the exact 
solution of Eq. (1). As a result, the method produces a reliable and accurate semi-analytical approxi-
mation that is consistent with the exact solution.

u x u x
n n( ) lim ( ).=
®¥

4. Applications and Discussion

This section presents and discusses the semi-analytical results obtained for several nonlinear FDEs 
with applications, using the CTAM. The effectiveness and accuracy of the proposed method are 
assessed by comparing the CTAM solutions with the analytical solutions. To support this evaluation, 
numerous tables and figures are presented. All symbolic operations and series expansions were per-
formed in Mathematica, while numerical error norms and graphical plots were created in MATLAB.
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Example 4.1. The nonlinear fractional Riccati differential equation is considered as [32]:

T u x u xa a( ) ( ), ,= - < £1 0 12  
given the initial condition

u(0) = 0.
We start by reformulating Eq. (9) using the semi-analytical iterative approach CTAM, as follows

L N G( ( )) ( ), ( ( )) ( ), ( ) .u x T u x u x u x x= = = -a   2 1
The first step involves solving the simplified equation

( ( )) , ( ) .u x u0 01 0 0= = 
Applying the fundamental properties defined in Definition 2.1 yields the following initial approximation

u0(x) = x.
Then, the subsequent iteration can be computed using

L N G( ( )) ( ( )) ( ) , ( ) .u x u x x u1 0 10 0 0+ + = = 
By applying the conformable derivative properties 2.1 and integrating both sides of Eq. (14), the next 
approximation is obtained as

u x
x x
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( )

.=
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a a a
a a

Proceeding to the next iteration, the following equation is used

L N G( ( )) ( ( )) ( ) , ( ) .u x u x x u2 1 20 0 0+ + = = 
Applying the same properties defined in definition 2.1 and integrating both sides of Eq. (16) results in

u x
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As defined in Eq. (8), each iteration of un(x) provides an approximation to the solution of Eq. (9). 
With each iteration, the semi-analytical solution gets closer to the exact solution. The series solution 
obtained by CTAM is expressed as

u x u x u x
n n( ) lim ( ) ( ).=
®¥

� 8

This series solution converges to the exact solution when a = 1, given by [32]

u x e
e

x

x( ) .= -
+

2

2
1
1

Figure 1(A), presents the results obtained from the proposed CTAM method using the 8-th iteration 
for various values a, along with the exact solution for a = 1, demonstrating that the solutions closely 
match the exact solution as a approaches 1, exhibit significant consistency across various fractional 
orders. When a = 1, 1(B) shows the absolute error between the CTAM solution at the 8-th iteration 
and the exact solution. Table 1 provides a thorough results comparison between the exact, Picard 
method, and CTAM solutions for a = 1, highlighting the decreased error and closer approximation 
to the exact solution with lower error compared to the results in [32]. Those findings indicate that 
increasing the number of iterations enhances the accuracy of the technique’s solution, which makes 
it closer to the exact solution.
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Figure 1: (A) The results of the proposed method in Example 4.1 with 8-th iteration for different  
a values and exact solution at a = 1. (B) The absolute errors between the proposed method and the 

exact solution for a = 1.

Table 1: A comparison between the 8-th CTAM solution, previous studies, and the exact  
solution at a = 1 of Example 4.1.

x uExact uCTAM ECTAM EPicard [32]

0 0 0 0 0
0.1 0.0996680 0.0996671 1.3878 × 10–20 8.689 × 10–14

0.2 0.1973753 0.1973753 2.7756 × 10–20 2.426 × 10–13

0.3 0.2913126 0.2913126 5.5511 × 10–20 6.055 × 10–13

0.4 0.3799490 0.3799481 8.4377 × 10–15 1.437 × 10–12

0.5 0.4621172 0.4621172 5.1092 × 10–13 2.776 × 10–12

0.6 0.5370496 0.5370496 1.3955 × 10–11 7.13 × 10–12

0.7 0.6043678 0.6043678 2.1831 × 10–13 2.622 × 10–10

0.8 0.6640368 0.6640368 2.2667 × 10–12 3.525 × 10–09

0.9 0.7162979 0.7162979 1.7160 × 10–11 7.782 × 10–08

1 0.7615942 0.7615943 1.0121 × 10–7 1.381 × 10–05

Example 4.2. The nonlinear fractional Riccati differential equation is considered as [32]:
T u x u x u xa a( ) ( ) ( ), ,= + - < £1 2 0 12  

with the initial condition
u(0) = 0.

To demonstrate the adaptability of the proposed method, Eq. (20) is reformulated within the CTAM  
as follows

L N G( ( )) ( ), ( ( )) ( ) ( ), ( ) .u x T u x u x u x u x x= = - + = -a   2 12

The initial issue that needs to be solved is given by
L(u0(x)) = 1, u0(0) = 0.
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Based on the properties outlined in definition 2.1, we get the following initial approximation
u0(x) = x.

The next iteration is calculated using 
L N G( ( )) ( ( )) ( ) , ( ) .u x u x x u1 0 10 0 0+ + = = 

Which, after integration and simplification both sides of Eq. (25), leads to

u x
x x x x x

1

2 2 22 1 4 3 2
1 2
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.= -
- -( ) + - -( ) -( )

+ +

a a a

a a a

Continuing the iterative process yields the next approximation by solving
L N G( ( )) ( ( )) ( ) , ( ) .u x u x x u2 1 20 0 0+ + = = 

By applying the properties of the conformable derivative defined in definition 2.1, followed by inte-
grating both sides of Eq. (27), we get
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Following this process, as defined in Eq. (8), each iteration un(x) is an approximate solution to Eq. (20). 
Then, the semi-analytical series solution using CTAM is expressed as follows

u x u x u x
n n( ) lim ( ) ( ).=
®¥

� 7

The solution reaches the exact solution when a = 1, given by [32]

u x t( ) tanh log .= + + -
+
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Figure 2 (A) illustrates the comparison between the exact solution and the 7-th iteration obtained 
using the CTAM method for Eq. (20) across various a values at x = 1, Figure 2 (B) displays the abso-
lute error between 7-th CTAM iteration and the exact solution. The accuracy of the 3-rd and 7-th 
iterations are highlighted in Table 2, the results show that, for the same number of iterations, CTAM 
produces smaller errors than Picard’s method in [32] and a more accurate approximation of the exact 
solution, demonstrating significant convergence. Moreover, the effectiveness of the method improves 
as the number of iterations increases, with the absolute error decreasing from 10–4 to as low as 10–7. 
showing that the CTAM approach effectively solves FDEs with high accuracy and fast convergence.
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Figure 2: (A) The results of the proposed method in Example 4.2 with 7-th iteration for different  
a values and exact solution at a = 1. (B) The absolute errors between the proposed method and the 

exact solution for a = 1.

Table 2: A comparison between the 3-rd, and the 7-th CTAM solution, previous studies, and the 
exact solution at a = 1 of Example 4.2.

x uExact

uCTAM 
(Proposed 
method)

ECTAM  
(3 iterations) 

ECTAM  
(7 iterations)

EPicard  
(3 iterations) [32]

EPicard  
(7 iterations) [32]

0.6 0.953566 0.953566 9.7760 × 10–4 0.5993 × 10–7 4.25 × 10–4 3 × 10–7

0.7 1.152949 1.152949 8.9484 × 10–4 5.1903 × 10–7 5.59 × 10–4 4.15 × 10–7

0.8 1.346364 1.346364 5.7367 × 10–4 2.5666 × 10–7 7.2152 × 10–5 2.76 × 10–7

0.9 1.526911 1.526911 4.0568 × 10–4 6.5035 × 10–7 3.33527 × 10–3 1.06 × 10–5

1 1.689498 1.689498 8.4708 × 10–4 5.0411 × 10–7 1.3963 × 10–2 8.33 × 10–5

Example 4.3. The nonlinear higher order fractional Painlevé differential equation is considered as [33]:
T u x u x xa a( ) ( ) , ,= + <6 1 22  

and the initial conditions
u u x0 00 0 0 1( ) , (( )) ( ) .= = 

Eq. (31) is reformulated using the CTAM as follows
L N G( ( )) ( ), ( ( )) ( ), ( ) .u x T u x u x u x x x= = - = -¢¢a   6 2

The initial issue to be addressed is defined by
L(u0(x)) = x, u0(0) = 0, ((u0))x(0) = 1.

Applying the fundamental properties outlined in definition 2.1, leads to the first iteration

u x x x
0

2

1
( ) ( )

( )
.= + +

+
a a
a a

a

The next iteration is obtained from
L N G( ( )) ( ( )) ( ) , ( ) , ( ) ( ) .u x u x x u u x1 0 1 10 0 0 0 1+ + = = =  
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This yields the following expression after integrating Eq. (36)

u x x
1 2 2

2 2 4 3

1 2 2 1 3 1 3 2
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This process is continued, with the third iteration derived from
L N G( ( )) ( ( )) ( ) , ( ) , (( )) ( ) .u x u x x u u x2 1 2 20 0 0 0 1+ + = = =  

By integrating both sides of Eq. (38) and applying the fundamental properties of definition 2.1, the 
third approximation is obtained as
u x2( )

=
+ + + + + + + + +
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As described in Eq. (8), each function un(x) provides an increasingly accurate approximation to the 
solution of Eq. (31). The semi-analytical solution is therefore represented as

u x u x u x
n n( ) lim ( ) ( ).=
®¥

� 5
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The semi-analytical results demonstrate that the solution to Eq. (31) closely matches the exact solu-
tion when a = 2. Figure 3 (A) displays the CTAM solutions at the 5-th iteration for many values of 
a, compared with the exact solution for a = 2. The CTAM results demonstrate the method’s accuracy 
over fractional orders, closely matching the analytical solution. The absolute error corresponding to 
a = 2, shown in Figure 3 (B) remains extremely low across the interval, which reflects strong con-
vergence characteristics. Table 3 provides a detailed comparison of the CTAM solution at a = 2 with  
the exact solution, along with additional results for a = 1.9, a = 1.8, and a = 1.7. The CTAM approx-
imations remain close to the exact solution, even for lower fractional orders, the method maintains 
robust accuracy. These findings confirm the capability of CTAM, with high precision and minimal 
computational cost.

Figure 3: (A) The results of the proposed method in Example 4.3 with 5-th iteration for different 
a values and exact solution at a = 2. (B) The absolute errors between the proposed method and 

the exact solution for a = 2.

Table 3: A comparison between the 5-th CTAM solution and the exact solution at a = 2 of  
Example 4.3.

x uExact uCTAM a = 2 ECTAM uCTAM a = 1.9 uCTAM a = 1.8 uCTAM a = 1.7

0.1 0.100217 0.100217 0 0.100295 0.100404 0.100555
0.2 0.202139 0.202139 2.200 × 10–14 0.202712 0.203451 0.204408
0.3 0.308631 0.308631 2.7400 × 10–13 0.310493 0.312804 0.315687
0.4 0.423986 0.423986 1.4860 × 10–12 0.428337 0.433605 0.440025
0.5 0.554340 0.554340 5.2260 × 10–11 0.562855 0.573003 0.585185
0.6 0.708462 0.708462 3.1116 × 10–10 0.723461 0.741164 0.762230
0.7 0.899250 0.899250 1.5184 × 10–9 0.924034 0.953140 0.987648
0.8 1.146532 1.146532 6.0144 × 10–8 1.186023 1.232370 1.287349
0.9 1.482524 1.482523 8.9931 × 10–7 1.544535 1.617538 1.704545
1.0 1.963128 1.963117 1.0186 × 10–5 2.060956 2.176951 2.316416

Example 4.4. The nonlinear fractional Bernoulli differential equation is considered as [34]:
6 2 0 14D u u xux

a a- = < £, , 
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and the initial condition 
u(0) = –2.

By reformulating Eq. (41) using the semi-analytical iterative method CTAM, yields the following

L N G( ( )) , ( ( )) , ( ) .u x D u u x u xu xx= = - - =6 2 04a   
The primary issue to address is

( ( )) , ( ) .u x u0 00 0 2= = - 
Which leads to the first iteration, based on the properties of definition 2.1, as

u0(x) = –2
The next approximation is computed from

L N G( ( )) ( ( )) ( ) , ( ) .u x u x x u1 0 10 0 2+ + = = - 
Using conformable derivative properties 2.1, we can integrate both sides of Eq. (46) and get

u x
x x x
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Continuing the iterative process, the next approximation is derived from
L N G( ( )) ( ( )) ( ) , ( ) .u x u x x u2 1 20 0 2+ + = = - 

Which results, after integration Eq. (48) and simplification, in the expression
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As outlined in Eq. (8), each iteration un(x) represents an approximation to the exact solution of  
Eq. (41). As more iterations are performed, the CTAM approximation converges progressively toward 
the exact solution. The approximate series solution can be written as

u x u x u x
n n( ) lim ( ) ( ).=
®¥

� 4

The exact solution when a = 1, as reported in (34), is

u x
x x

( )
( exp( ))

.= -
- + -

2

4 4 5
1
3

For a = 1, the exact solution of Eq. (41) corresponds to the CTAM solution. As illustrated in Figure 4 (A),  
CTAM solution curve behavior for different values of a, showing strong agreement with the exact 
solution for a = 1. Figure 4 (B) presents the absolute error between the 4-th CTAM iteration and the 
exact solution for a = 1, which remains relatively small across the domain. Table 4 presents a detailed 
comparison at specific values of x between the CTAM results and the exact solution, confirming the 
method’s high precision at a =1. Moreover, comparisons for a = 0.9, a = 0.8, and a = 0.7 demonstrate 
that the approach can produce accurate solutions for a variety of fractional orders.

Figure 4: (A) The results of the proposed method in Example 4.4 with 4-th iteration for different  
a values and exact solution at a = 1. (B) The absolute errors between the proposed method and 

the exact solution for a = 1.
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Table 4: A comparison between the 4-th CTAM solution and the exact solution at a =1 of Example 4.4.
x uExact uCTAM (a = 1) ECTAM uCTAM (a = 0.9) uCTAM (a = 0.8) uCTAM (a = 0.7)

0.1 –2.05325724 –2.05325724 2.3100 × 10–13 –2.075483 –2.108488 –2.158698
0.2 –2.07638030 –2.07638027 2.4829 × 10–8 –2.101997 –2.137744 –2.188443
0.3 –2.06835905 –2.06835670 2.3466 × 10–6 –2.089671 –2.118381 –2.157239
0.4 –2.03334848 –2.03331138 3.7107 × 10–5 –2.047393 –2.066154 –2.090755
0.5 –1.97869330 –1.97845045 2.4286 × 10–4 –1.985344 –1.994714 –2.006262
0.6 –1.91226155 –1.91134176 9.1978 × 10–4 –1.912262 –1.913599 –1.913125
0.7 –1.84061406 –1.83824633 2.3677 × 10–3 –1.834363 –1.828446 –1.815455
0.8 –1.76838175 –1.76390656 4.4752 × 10–3 –1.755858 –1.742548 –1.715025
0.9 –1.69843155 –1.69217576 6.2558 × 10–3 –1.680033 –1.658409 –1.613213
1.0 –1.63231819 –1.62674042 5.5778 × 10–3 –1.610121 –1.578726 –1.511991

Example 4.5. The nonlinear higher degree fractional Liénard equation is considered as [35, 36]:

D u t D u u ub b( ) . , ,+ + + = < £¢0 5 25 25 0 1 23  
with the initial conditions

u(0) = 0.1, u¢(0) = 0.
Eq. (52) is reformulated using CTAM as follows

L N G( ( )) ( ), ( ( )) . , ( ) .u x D u t u x D u u u x= = + + =¢b   0 5 25 25 03

The initial iteration to solve defined as

( ( )) , ( ) . , ( ) ( ) .u x u u x0 0 00 0 0 1 0 0= = =  
Which lead to the first approximation based on the conformable derivative definition 2.1

u x0
1

10
( ) .=

Then, we obtain the next iteration from
L N G( ( )) ( ( )) ( ) , ( ) . , ( ) ( ) .u x u x x u u x1 0 1 10 0 0 1 0 0+ + = = =  

And by integrating both sides of Eq. (57), results in 

u x t
1 0 1 2 525
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Continuing this process, the following iteration is defined by

L N G( ( )) ( ( )) ( ) , ( ) . , ( ) ( ) .u x u x x u u x2 1 2 20 0 0 1 0 0+ + = = =  
After applying integration of both sides of Eq. (59) and the fundamental conformable derivative prop-
erties 2.1, yields
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According to Eq. (8), each iteration un(x) approaches the solution of Eq. (52), and the approximate 
solution is expressed as

u x u x u x
n n( ) lim ( ) ( ).=
®¥

� 3

The exact analytical solution for a = 2, is given by [35, 36]

u t t t t t t( ) . . . . . . .= - + + - - +0 1 1 2625 0 2104 2 6828 0 5392 2 6563 0 612 3 4 5 6 552 7t .
The specific case of a = 2 shows that the exact solution in Eq. (62) aligns closely with the CTAM 
solution. Figure 5 (A) illustrates the CTAM solution compared with the exact solution at a = 2 and 
for different a values. Figure 5 (B) presents the absolute error between the 3-rd iteration CTAM 
solution and the exact solution at a = 2. Table 5 provides a comparison between the 3-rd itera-
tion of CTAM, the previous methods in the studies, and the exact solution at various t values for  
a = 2, along with CTAM results for various a = 1.9, a = 1.8, and a = 1.7 showing that the method 
maintains robust accuracy across different fractional orders, and provide a better error comparing 
to the result in [36]. The semi-analytical solution approaches the exact solution as the number of  
iterations grows.

Figure 5: (A) The results of the proposed method in Example 4.5 with 3-rd iteration for different  
a values and exact solution at a = 2. (B) The absolute errors between the proposed method and 

the exact solution for a = 2.
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Table 5: A comparison between the 3-rd CTAM solution and the exact solution at a = 2 of  
Example 4.5.

t uExact

uCTAM  
(a = 2) ECTAM E[36]

uCTAM  
(a = 1.9)

uCTAM  
(a = 1.8)

uCTAM  
(a = 1.7)

0.00 0.100000 0.100000 0 0.00000 0.100000 0.100000 0.100000
0.01 0.099874 0.099874 1.646 × 10–11 7.0821× 10–7 0.099767 0.099562 0.099165
0.02 0.099497 0.099497 1.220 × 10–10 5.4931 × 10–6 0.099133 0.098484 0.097311
0.03 0.098872 0.098872 3.377 × 10–10 1.7960 × 10–5 0.098134 0.096875 0.094692
0.04 0.098000 0.098000 4.859 × 10–10 4.1211 × 10–5 0.096791 0.094790 0.091429
0.05 0.096887 0.096887 2.080 × 10–11 7.7852 × 10–5 0.095122 0.092271 0.087606
0.06 0.095535 0.095535 2.477 × 10–9 1.3001 × 10–4 0.093141 0.089353 0.083290
0.07 0.093949 0.093949 9.269 × 10–9 1.9934 × 10–4 0.090863 0.086067 0.078538
0.08 0.092135 0.092135 2.433 × 10–8 2.8706 × 10–4 0.088302 0.082441 0.073401
0.09 0.090099 0.090099 5.369 × 10–8 3.9394 × 10–4 0.085472 0.078503 0.067926
0.10 0.087847 0.087846 1.060 × 10–7 5.2036 × 10–4 0.082386 0.074277 0.062155

Example 4.6. The time-fractional order of the nonlinear Fisher’s equation is considered as [37]:
¶
¶
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In this example, the CTAM approach is applied to a time-fractional nonlinear PDE represented by  
Eq. (63), which is reformulated as
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The following formula can be used to calculate the second iteration
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Consequently, after integration both sides of Eq. (68), results in
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The following iteration is then produced by solving 
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By applying the conformable derivative properties 2.1 and integrating both sides of Eq. (70), leads to
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Each iteration of un(x, t) is an approximation to the solution of Eq. (63) solution, as shown by Eq. (8). 
With increasing iterations, the semi-analytical solution converges to the exact solution. Thus, the 
analytical solution can be approximated by

u x t u x t u x t
n n( , ) lim ( , ) ( , ).=
®¥

� 2

The exact solution for a = 1, is given by [37]

u x t
e

x tk( , ) .=
+

-

1

1 2

The analytical results for a = 1 demonstrate that the CTAM solution that precisely matches the 
exact solution in Eq. (63). Notably, the CTAM method is also effective for solving FPDEs. Figure 6 
the CTAM results with the exact solution across multiple views. As shown in Subfigures (A) and (B) 
shows alignment between the analytical and CTAM approximation. Figures 6 (C)-(E) indicate that 
for fixed values of x and t, CTAM results remain extremely close the exact solution across a values, 
however the absolute error surface in Figure 6 (F) further confirms the high accuracy of the approach, 
with minimal error distributed across space and time. Table 6 provides a comparison of the 2-nd itera-
tion CTAM solution with the exact solution for a = 1 at t = 0.1, under two different parameters, k = 0.1 
and k = 2 2/ ,  the CTAM solution demonstrates good agreement with the exact solution, as indicated 
by the small errors. The results show that the accuracy of the CTAM method improves, and the CTAM 
solution approaches the exact solution as the number of iterations increases. Demonstrating that the 
CTAM can produce remarkably accurate solutions in both spatial and temporal dimensions, making 
it perfectly suited for addressing FPDEs.
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(A) Exact solution of u(x,t).	 (B) CTAM approximate solution of u(x,t).

(C) �The results of CTAM method for different 
a values and exact solution at x = 1.

(D) �CTAM solutions compared to the exact 
solution for different x values when t = 1.

(E) �Comparative of the exact solution at  
t = 1 with various a values.

(F) �The absolute errors between the exact 
solution and CTAM.

Figure 6: A behaves of CTAM analytical solution u(x,t) of Example 4.6 as a function of time t and 
space x, when k = 2

2 .
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Table 6: A comparison between the 2-nd CTAM solution, and the exact solution at a = 1, and t = 0.1 
of Example 4.6.

k = 0.1 k = 2
2

x uExact uCTAM ECTAM uExact uCTAM ECTAM

0 0.501768 0.512497 1.072960 × 10–2 0.512497 0.512497 4.947900 × 10–8

1 0.331804 0.341391 9.587100 × 10–3 0.341390 0.341391 1.543440 × 10–6

2 0.196685 0.203557 6.871900 × 10–3 0.203556 0.203557 6.789530 × 10–7

3 0.107720 0.111915 4.195850 × 10–3 0.111916 0.111915 3.320900 × 10–7

4 0.056181 0.058501 2.319580 × 10–3 0.058501 0.058501 5.629650 × 10–7

5 0.028513 0.029726 1.213090 × 10–3 0.029727 0.029726 4.254860 × 10–7

6 0.014265 0.014881 6.161560 × 10–4 0.014881 0.014881 2.539760 × 10–7

7 0.007085 0.007393 3.083360 × 10–4 0.007393 0.007393 1.371160 × 10–7

8 0.003506 0.003659 1.531500 × 10–4 0.003659 0.003659 7.064640 × 10–8

9 0.001732 0.001808 7.578800 × 10–5 0.001808 0.001808 3.559070 × 10–8

10 0.000855 0.000892 3.743570 × 10–5 0.000892 0.000892 1.773500 × 10–8

5. Conclusions

The conformable Temimi-Ansari method (CTAM) has been presented as a novel semi-analytical 
technique for solving FDEs. The efficiency of the method was evaluated through the solution of  
various examples of nonlinear FDEs, with its effectiveness validated by calculating absolute errors 
and comparing them to the previous studies. Results were presented using figures and tables using 
Mathematica and MATLAB to enhance computational speed and accuracy. Owing to CTAM simplicity,  
adaptability, accuracy, and the smaller error compared to previous studies, the approach demon-
strates substantial potential for application to real-world problems that are represented by related 
classes of FDEs, making it a promising method for future research across a wide range of scientific 
and engineering applications.
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