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Abstract

The aim of the study is to present an efficient semi-analytical technique for solving fractional differen-
tial equations (FDEs), the conformable Temimi-Ansari method (CTAM). To evaluate the performance
of the method, six nonlinear FDEs are investigated: the Riccati differential equation, the Painlevé
equation, the Bernoulli differential equation, the Liénard equation, and the time-fractional Fisher’s
equation. The accuracy and efficiency of CTAM are assessed through the computation of error norms.
To demonstrate the validity and behavior of the obtained solutions, various graphical representations
and tables are provided.
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1. Introduction

In recent years, there has been considerable interest in fractional calculus because of its effective-
ness in modeling diverse phenomena observed in numerous scientific and engineering applications.
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This growing interest has resulted in significant advances in the development and application of frac-
tional differential equations (FDEs), which have been used to describe a wide range of phenomena in
fields such as acoustics, electromagnetics, electrochemistry, engineering, physics, and materials sci-
ence, including properties that traditional calculus often cannot address [1-8]. Despite their versatility,
analytical solutions to FDEs remain difficult to obtain due to their nonlinear terms. As a result, many
researchers have developed semi-analytical approach to address these equations, which can produce
accurate approximate solutions. Among the most often utilized methods are procedures such as the
conformable fractional reduced differential transform (CFRDTM) [9], Homotopy analysis method [10],
Picard method [11], conformable reduced differential transform method (CRDTM) [12], B-spline col-
location method [13], etc. Among these, the Temimi and Ansari Method (TAM) [14, 15], developed
by Temimi and Ansari has demonstrated advantages due to its capability to address differential
equations across both linear and nonlinear equations of an integer order. Compared to many other
methods, TAM does not depend on additional parameters or limited assumptions whenever address-
ing nonlinear terms. The purpose of this study is to extend the applicability of the Temimi and Ansari
Method (TAM) to nonlinear FDEs by using the conformable fractional operator. This modification
enables the development of both approximate and semi-analytical solutions, providing an effective
approach to addressing the challenges associated with such equations. To demonstrate the efficiency
of the proposed method, we consider several fundamental FDEs. Among them is the Riccati equation,
which has been extensively applied in diverse fields such as economics, physics, and epidemiology,
highlighting versatility and utility in many scientific subjects [16]. We additionally investigate the
Painlevé equations, which have an important role in simulating complex physical phenomena, such
as simulations of electric fields in quantum gravity, and random matrix theory [17, 18]. Bernoulli’s
equation plays a vital role in addressing force and energy-related problems that frequently arise
in engineering. It forms the theoretical basis for hydraulic mechanics [19]. The Liénard equations
are similarly important since they are used to simulate a wide range of dynamical phenomena that
extend to fields such as biology, mechanics, electrical systems, mathematics, and engineering [20].
We additionally investigate Fisher’s equation, which is widely utilized to describe the propagation of
beneficial genes, as an example of FPDEs. It is essential for simulating phenomena including auto-
catalytic chemical reactions and Brownian motion [21, 22]. Considering these challenges, the main
goal of this study is to provide an efficient semi-analytical technique that can address some of the
limitations of current semi-analytical methods by handling significant classes of nonlinear FDEs that
appear in physics and engineering. We intend to evaluate the performance of the proposed method in
terms of accuracy, convergence, and computational efficiency by comparing it with exact solutions and
with results previously reported in the literature.

The article has the following structure: The first section introduces and discusses the motivation
for the investigation. The second section explores the definition and the primary properties of the con-
formable fractional derivative. In the third section, the essential concepts of the conformable Temimi-
Ansari Method (CTAM) are presented in terms of FDEs. The fourth section utilizes the presented
method on several nonlinear FDEs and investigates the results obtained. Finally, the fifth section
concludes with the study results.

2. Definition and Properties of the Conformable Fractional Derivative

Through the years, numerous definitions of fractional calculus have been proposed. Among them, the
conformable fractional derivative was discovered as a powerful and practical tool. The conformable
derivative preserves numerous fundamental properties of the classical derivative, such as linearity
and the product, quotient, chain, and power rules, making it simpler to deal with both linear and
nonlinear FDEs. For a wide range of physical models, the use of a conformable derivative is often
combined with standard reductions such as travelling-wave transformations, which convert FDEs
into nonlinear ODEs of integer order, making it ideal for nonlinear FDEs and the CTAM technique
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developed in the current study [23, 24, 25]. This section clarifies the basic concepts and primary prop-
erties of conformable calculus, which serve as the theoretical basis for the method proposed in this
study [26-28].

Definition 2.1. Let w:[0,c) > R be a function. The conformable fractional derivative of v of order
0€(0,1] at a point { >0 is defined by [27, 26]:

oW +el) -w(d)
(D)) =lim - .

Definition 2.2. Let v be a function that is differentiable up to order v at a point { >0. For any
Se (v,v+1], let| 8] denote the least integer not smaller than 8. Then the conformable fractional deriv-
ative of y of order dis defined by [26]:

(51) [51-6y _ v [1-1)
RTI A ( TS Bl A (D)
(D;w)(§) =1im . :

Lemma 2.3. [26] Suppose wand ¢ are both differentiable of order & at some point § >0, with <€ (0,1].
Then the following properties are satisfied:

(1) Linearity. D;(fy +y®) = BD,y + yD,®, where B, ye R.

(2) Power Function Rule. D,({")=p{ "™, for any pe R.

(3) Constant Function Rule. D;(y({)) =0, if w({)=A4 for constant A.
(4) Product Rule. D,(y(\)®() = W(§)D,0() + B()Dyw().

(5) Quotient Rule. D v(©) |_ D(0)Dy(E) —w(&)D;(E) .
o) (@)

(6) Higher-Order Derivative. If v is differentiable at {, then Dyy({) = C”%\p({).

Lemma 2.4. [26] If v is v-times differentiable at { >0, then for any 0€ (V,v +1], the conformable
fractional derivative satisfies:
4ol

Dyw(§)=¢ ok ¢ 151

w(g).

3. The Proposed Method: Conformable Temimi-Ansari Method (CTAM) for Fractional
Differential Equations

The conformable Temimi-Ansari method (CTAM) is a practical semi-analytical approach for nonlin-
ear FDEs, which eliminates the need for Lagrange multipliers and Adomian polynomials, compared
to the variational iteration method and the Adomian decomposition method. As a result, the iterative
process maintains a very simple mathematical structure while achieving accuracy better than vari-
ous methods, with a lower processing cost. To clarify the main concept of the technique, the following
generic form of a non-homogeneous FDE is considered as follows [15, 29]

Lw(x))+ N w(x)+G(x)=0, n-1<a<n,

with the boundary conditions

du
Bu,=—)=0,
(w dx)
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We start by employing the conformable fractional derivative, which 1is defined as
L=T""u(x)=T"" diu(x), where T“'u(x):=D,u(x) using Lemma 2.3, property (6) with 6 = ¢, here
t

u(x) is the unknown function, x is the independent variable, and ¢ is the dependent variable. The general
linear and nonlinear differential operators are denoted by A, and the boundary operator by B.
The known continuous functions are expressed as G(x). In this context, the conformable formulation
depends on the generic differential operator £. When necessary, linear and nonlinear variables can be
combined to simulate more complicated systems. A detailed convergence analysis of the method has
been presented in [15, 29, 30, 31], verifying its mathematical accuracy.

As a first step in the proposed method, the nonlinear term is isolated, yielding the following initial
condition

T, (%) = G(x), By, 20) =0.
dx

By substituting the conformable fractional derivative and differentiating the left side with respect to
t, the following expression is obtained

L) =T G, B(uo,%> -o.

The initial solution u, is obtained by integrating both sides of the equation with respect to ¢ and
solving the equation with the given conditions. The subsequent iteration is then derived by solving
the following expression

du,
dx

By substituting the conformable fractional derivative and differentiating the left side with respect to
t, followed by integrating both sides of the equation with respect to ¢ and applying the conditions, the
solution for u, is obtained as follows

T, (x) + N (u,(x)) = G(x), B(u,,—) =0.

d _ du

—u, (x) =T (=N (4, (x)) + G(x)), B(w,,—=+)=0.

dx dx
This process leads to the solution of both linear and nonlinear equations through a straightforward
iterative step, represented by v (x).

i n+l? du’”'l ) = 0
dx dx

In the CTAM approach, each u_, (x) represents an iterative solution to Eq. (1). The iterative method is
formulated to be straightforward to implement, with each consecutive approximation improving the
accuracy of its predecessor. As iterations increase, the semi-analytical solution converges to the exact
solution of Eq. (1). As a result, the method produces a reliable and accurate semi-analytical approxi-
mation that is consistent with the exact solution.

u,,(x)=T""(-N(y,(x)) + G(x)), Bu

u(x) = %}g} u, (x).

4. Applications and Discussion

This section presents and discusses the semi-analytical results obtained for several nonlinear FDEs
with applications, using the CTAM. The effectiveness and accuracy of the proposed method are
assessed by comparing the CTAM solutions with the analytical solutions. To support this evaluation,
numerous tables and figures are presented. All symbolic operations and series expansions were per-
formed in Mathematica, while numerical error norms and graphical plots were created in MATLAB.
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Example 4.1. The nonlinear fractional Riccati differential equation is considered as [32]:
T u(x)=1-u’(x), 0<o <1,

given the initial condition

u(0) = 0.
We start by reformulating Eq. (9) using the semi-analytical iterative approach CTAM, as follows

L(u(x)) =T u(x), N(u(x)) =u*(x), G(x)=-1.
The first step involves solving the simplified equation
L(u,(x)) =1, u,(0)=0.

Applying the fundamental properties defined in Definition 2.1 yields the following initial approximation

u,(x) = x.
Then, the subsequent iteration can be computed using

L(u, (%)) + N (u,(x)) + G(x) =0, u,(0)=0.

By applying the conformable derivative properties 2.1 and integrating both sides of Eq. (14), the next
approximation is obtained as

x (o —ox* +2)

(%) = ala+2)

Proceeding to the next iteration, the following equation is used
L(u,(x)) + N (u,(x)) + G(x) =0, u,(0)=0.
Applying the same properties defined in definition 2.1 and integrating both sides of Eq. (16) results in
B 1
30’ (o +2)* (3o +2) (30 + 4)
x[ 80 (Bt +2)x™* — (a +2)* (90" +18cx + 8)x™

+60°(3a” + 100+ 8)x™** + 3ar* (v + 2)* (90" + 180 + 8)x” |.

Uy (%)

As defined in Eq. (8), each iteration of u (x) provides an approximation to the solution of Eq. (9).
With each iteration, the semi-analytical solution gets closer to the exact solution. The series solution
obtained by CTAM is expressed as

u(x) = %LI_)IE u, (x) = uy(x).

This series solution converges to the exact solution when o = 1, given by [32]
e” -1

u(x) e +1

Figure 1(A), presents the results obtained from the proposed CTAM method using the 8-th iteration
for various values o, along with the exact solution for oo = 1, demonstrating that the solutions closely
match the exact solution as o approaches 1, exhibit significant consistency across various fractional
orders. When o = 1, 1(B) shows the absolute error between the CTAM solution at the 8-th iteration
and the exact solution. Table 1 provides a thorough results comparison between the exact, Picard
method, and CTAM solutions for o = 1, highlighting the decreased error and closer approximation
to the exact solution with lower error compared to the results in [32]. Those findings indicate that
increasing the number of iterations enhances the accuracy of the technique’s solution, which makes
it closer to the exact solution.
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Figure 1: (A) The results of the proposed method in Example 4.1 with 8-th iteration for different

o values and exact solution at o = 1. (B) The absolute errors between the proposed method and the

exact solution for o= 1.

Table 1: A comparison between the 8-th CTAM solution, previous studies, and the exact

solution at a =1 of Example 4.1.

X U pract Ucram Eeran Epieara [32]
0 0 0 0

0.1 0.0996680 0.0996671 1.3878 x 10 8.689 x 101
0.2 0.1973753 0.1973753 2.7756 x 1020 2.426 x 10713
0.3 0.2913126 0.2913126 5.5511 x 1020 6.055 x 10
0.4 0.3799490 0.3799481 8.4377 x 107" 1.437 x 102
0.5 0.4621172 0.4621172 5.1092 x 1013 2.776 x 10712
0.6 0.5370496 0.5370496 1.3955 x 107 7.13x 10712
0.7 0.6043678 0.6043678 2.1831 x 1013 2.622 X 10710
0.8 0.6640368 0.6640368 2.2667 x 101 3.525 x 107
0.9 0.7162979 0.7162979 1.7160 x 107 7.782 x 107

1 0.7615942 0.7615943 1.0121 x 1077 1.381 X 107%

Example 4.2. The nonlinear fractional Riccati differential equation is considered as [32]:

with the initial condition

To demonstrate the adaptability of the proposed method, Eq. (20) is reformulated within the CTAM

as follows

L(u(x)) =Tu(x), N(u(x)) =—-2u(x) +u’*(x), G(x)=-1.

The initial issue that needs to be solved is given by

u(0) = 0.

Tu(x) =1+ 2u(x)-u’(x), O0<a <1,

L(uy(x) =1, u,(0)=0.
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Based on the properties outlined in definition 2.1, we get the following initial approximation
u,(x) = x.
The next iteration is calculated using
L(u,(x))+ N (u,(x))+G(x) =0, u,(0)=0.
Which, after integration and simplification both sides of Eq. (25), leads to
x“ ((xz (x2 —2x —1)+oc(x2 —4x—3)—2)
oa(a+1)(a+2)

ul(x) =—

Continuing the iterative process yields the next approximation by solving
L(u,(x)) + N (w, (x)) + G(x) = 0, u,(0)=0.

By applying the properties of the conformable derivative defined in definition 2.1, followed by inte-
grating both sides of Eq. (27), we get

o

X
30’ (20 +1)(3er +1)(3cx +2)(3ex + 4) (o + Box + 2)2

u,(x) =—

X [—3042 (o + 30 +2) (540* +1530° +1470 + 580 + 8)
+30’ (a +1)* (180° + 270" +130r +2) 2™

(0 +30+2) (5da* +1530° +1470% + 580 + 8)x*

~120° (o0 + 2)* (270" + 900 +1050” + 500 + 8) &

+120% (o +2)° (18a* + 630’ + 790" + 4200 + 8) x™"!

— 40’ (540 +2610" + 453" + 352" +1240 +16) x**"

+30” (54a° +3150° + T14a* +8050.° +4760° +1400 +16) x**
+60° (180° +111a° +233a" +1770° +Ta* — 340r — 8) x™*

~3a(0® + 30 +2) (54a* +1530° +1470° +58(x+8)x“]

Following this process, as defined in Eq. (8), each iteration u _(x) is an approximate solution to Eq. (20).
Then, the semi-analytical series solution using CTAM is expressed as follows

u(x) = lnl_)IE u, (x) =u,(x).

The solution reaches the exact solution when o= 1, given by [32]

u(x):1+\/§tanh[\/§t+%log[\/§_1)}

\/§+1

Figure 2 (A) illustrates the comparison between the exact solution and the 7-th iteration obtained
using the CTAM method for Eq. (20) across various o values at x = 1, Figure 2 (B) displays the abso-
lute error between 7-th CTAM iteration and the exact solution. The accuracy of the 3-rd and 7-th
iterations are highlighted in Table 2, the results show that, for the same number of iterations, CTAM
produces smaller errors than Picard’s method in [32] and a more accurate approximation of the exact
solution, demonstrating significant convergence. Moreover, the effectiveness of the method improves
as the number of iterations increases, with the absolute error decreasing from 10~ to as low as 107,
showing that the CTAM approach effectively solves FDEs with high accuracy and fast convergence.



Alrzqi S.F. et al., Results in Nonlinear Anal. 8 (2025), 140-158

147

B Absolute Error atnMax = 7
22 e X0 : ‘ ;

u(x)
Absolute Error
w

N
T

0.8 I I I L I I I | 0

I I I I I I
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 0.6 0.65 0.7 0.75 0.8 0.85 0.9

I
0.95 1

Figure 2: (A) The results of the proposed method in Example 4.2 with 7-th iteration for different
o values and exact solution at o« = 1. (B) The absolute errors between the proposed method and the

exact solution for o= 1.

Table 2: A comparison between the 3-rd, and the 7-th CTAM solution, previous studies, and the

exact solution at o= 1 of Example 4.2.

u

CTAM
(Proposed ECTAM ECTAM Picard Picard

X Uy . method) (3 iterations) (7 iterations) (3 iterations) [32] (7 iterations) [32]
0.6 0.953566 0.953566 9.7760 x 10* 0.5993 x 10”7 4.25 x 10 3x107
0.7 1.152949 1.152949 8.9484 x 10* 5.1903 x 107 5.59 x 10+ 4.15 x 107
0.8 1.346364 1.346364 5.7367 x 10* 2.5666 x 1077 7.2152 x 105 2.76 X 1077
0.9 1.526911 1.526911 4.0568 x 10* 6.5035 x 107”7 3.33527 x 1073 1.06 x 105

1 1.689498 1.689498 8.4708 x 10* 5.0411 x 1077 1.3963 x 102 8.33 x 10-°

Example 4.3. The nonlinear higher order fractional Painlevé differential equation is considered as [33]:

T u(x) =6u’(x) +x, 1<a<2,

and the initial conditions

u,(0) =0, (1)), (0)=1.

Eq. (31) is reformulated using the CTAM as follows
L(u(x)) =T u"(x), N (u(x)) =—-6u*(x), G(x)=—x.

The initial issue to be addressed is defined by
L(u,(x) = x, u,(0) =0, (&), 0) = 1.

Applying the fundamental properties outlined in definition 2.1, leads to the first iteration
x(o® + o +x%)

to (%) = ala+1)

The next iteration is obtained from

L(u, (x)) + N (u,(x)) +G(x) =0, u,(0)=0, (&) (0)=1.
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This yields the following expression after integrating Eq. (36)

X
o’ (a+1)*(a+2)2a +1)(3a +1) (30 + 2)
x[a*(a+1)* (18" +63a” + 670 + 280 +4) + 6(2a” + 501 +2)x*"!
+60(90 + 270 + 200 + 4)x** ™ + 6a* (18 + 45a” + 40a” + 150 + 2)x* ™
+a(180 +81a* +1300° + 950 +32a + 4)x” |.

u, (x) =

This process is continued, with the third iteration derived from
L(w, (x)) + N (w, (x)) + G(x) =0, u,(0) =0, ((u,)),(0)=1.
By integrating both sides of Eq. (38) and applying the fundamental properties of definition 2.1, the
third approximation is obtained as
u,(x)

X
ot (e + D) (@ +2)% (20 + 3) (B + 4) (4 + 3)(5ax + 2)(Ber + 3)(5ar + 4) (Tar + 3)(Tax + 4)(18a* + 270 +130x + 2)°

x[ o’ (e +1)" (180" + 630" + 670’ + 280 + 4)* (1470000 + 9383500 +25347550.° + 37892240

+34348250" +1936782a” +664488c” +127008c +10368)x” + 6¢r* (or +1)°(18c” + 27 +13cx + 2)°
(1470000° +12323500° +44114550" + 8858734a° +11013273c” + 8806432a* + 45380520:” +14559840.”
+2643840 +20736)x"" + 60 (9a* + 36¢° +47a” + 24 + 4)*(2940000° +20237000° + 6007860¢”
+10113203° +106588740” + 7308389c* + 32657580 + 9185040 +147744a +10368)x*** + 36a* (18a*
+450° + 400 + 150 + 2)*(735000® + 5059250." +1446840c® +2259107a° + 2117976 +12262520°
+4296480” + 835200 + 6912)x**** + 60” (2a¢” + To” + T + 2)* (13230000 +97681500° + 315519450.°
+58792511a" + 70085951’ + 55922911 + 30281080 +10997028c:” + 25653600” + 347328
+20736)x°*" + 720” (3a” + 4 +1)* (8820000 + 8423100¢™ +35389180a” + 86497289¢” +1369136860”
+147648971a° +110899882° + 581151320 + 208542960 + 4887072c” + 6739200 + 41472)x°***
+720* (18 + 27 + 130 + 2)*(49000¢® + 2964500 +7624350° +10914130° +952799* +520137a”
+1735740 + 324000 + 2592)x>** + 360* (o + 2)* (36382500 + 317409750 +1240902300"
+287658229 + 4406955380:° + 4703964450" + 358949074¢° +197421611a° + 777176760
+21367380a” + 38964960” + 4233600 + 20736)x*“"* +108a*(9a” + 9o + 2)* (73500 + 5978000
+20654650" +39831320° + 47339710 + 36060560" +1766092¢° +5379360.° + 927360 + 6912)x***?
+720:(20* + 5o + 2)*(529200° + 3907260.° +1249377a" +22706270° +25846610° +191074 30"
+9170980° + 2754480 + 469440 + 3456)x°*** + 2160* (899640 + 9457686¢'" + 44007357
+1198258450° + 2126836470.° + 259401895a" +223138872¢° +1365659980:° + 59098188a:*
+176596080” + 34636320* + 400896¢r + 20736)x°*** + T2a(cx + 2)*(441000a” + 29620500.° + 85426150
+13902427a° +140936990° +9245171a* + 39302460 +10455120* +158112¢ +10368)x°**

+216(20* + 5or + 2)*(30000° +161500° + 34845a* + 385310 + 23034a” + 70560 + 864)x™** + o' (o0 +1)*
(18" +630° + 670 + 280 + 4)*(1470000® + 9383500 + 25347550° + 3789224¢.° + 3434825¢."
+1936782¢° + 664488¢” +127008¢ + 10368)].

As described in Eq. (8), each function u (x) provides an increasingly accurate approximation to the
solution of Eq. (31). The semi-analytical solution is therefore represented as

u(x) = 1113.} u,(x) =u(x).
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The semi-analytical results demonstrate that the solution to Eq. (31) closely matches the exact solu-
tion when o = 2. Figure 3 (A) displays the CTAM solutions at the 5-th iteration for many values of
o, compared with the exact solution for o = 2. The CTAM results demonstrate the method’s accuracy
over fractional orders, closely matching the analytical solution. The absolute error corresponding to
o = 2, shown in Figure 3 (B) remains extremely low across the interval, which reflects strong con-
vergence characteristics. Table 3 provides a detailed comparison of the CTAM solution at o = 2 with
the exact solution, along with additional results for oo = 1.9, o= 1.8, and o= 1.7. The CTAM approx-
imations remain close to the exact solution, even for lower fractional orders, the method maintains
robust accuracy. These findings confirm the capability of CTAM, with high precision and minimal
computational cost.
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Figure 3: (A) The results of the proposed method in Example 4.3 with 5-th iteration for different
o values and exact solution at o= 2. (B) The absolute errors between the proposed method and
the exact solution for o = 2.

Table 3: A comparison between the 5-th CTAM solution and the exact solution at o= 2 of

Example 4.3.

X Y pract Ueran 0= 2 Eoran Uoray O = 1.9 Uppyy = 1.8 Uppyy 0= 1.7
0.1 0.100217 0.100217 0 0.100295 0.100404 0.100555
0.2 0.202139 0.202139 2.200 x 107 0.202712 0.203451 0.204408
0.3 0.308631 0.308631 2.7400 x 10713 0.310493 0.312804 0.315687
0.4  0.423986 0.423986 1.4860 x 10712 0.428337 0.433605 0.440025
0.5 0.554340 0.554340 5.2260 x 10 0.562855 0.573003 0.585185
0.6 0.708462 0.708462 3.1116 x 1071 0.723461 0.741164 0.762230
0.7  0.899250 0.899250 1.5184 x 10° 0.924034 0.953140 0.987648
0.8 1.146532 1.146532 6.0144 x 1078 1.186023 1.232370 1.287349
0.9 1.482524 1.482523 8.9931 x 1077 1.544535 1.617538 1.704545
1.0 1.963128 1.963117 1.0186 x 105 2.060956 2.176951 2.316416

Example 4.4. The nonlinear fractional Bernoulli differential equation is considered as [34]:

6Dy —2u=xu", 0<a <1,
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and the initial condition

U, (x) =

u(0) = -2.

By reformulating Eq. (41) using the semi-analytical iterative method CTAM, yields the following

L(u(x)) =6D%u, N(u(x))=-2u—xu", G(x)=0.

The primary issue to address is

L(u,(x)) =0, u,(0)=-2.

Which leads to the first iteration, based on the properties of definition 2.1, as

u,(x) =2

The next approximation is computed from

L(u, (%)) + N (u,(x)) +G(x) =0, u,(0)=-2.

Using conformable derivative properties 2.1, we can integrate both sides of Eq. (46) and get

2(3052 + 30— 4ax™ +ox® + x“)
oo +1)

u, (x)=-

Continuing the iterative process, the next approximation is derived from

L(u,(x)) + N (u,(x)) +G(x) =0, u,(0)=-2.

Which results, after integration Eq. (48) and simplification, in the expression

1
12150* (or +1)° 2 +1) (3 +1) (30 + 2)

1
"o+ D)(dc + 3) (50 + 1) (5et + 2)(5er + 3) (5ot + 4)

X [—810063(06 +1)°(180000c” + 8100000® +1585750c" +1770125a° +1239787x°
+564155a* +166531” +307040” + 32040 +144)x” —135a* (o +1)° (1800000’

+8100000® +15857500" +1770125¢c° +12397870° + 5641550.* +166531a” +307040.”
+32040¢ +144)x* + 32400 (o +1)*(180000c” + 810000¢® +15857500" +17701250:°

+1239787a” +564155a* +166531a” + 307040 + 320400 +144)x*"

+1080c’ (o +1)* (5ax + 4)*(180000¢” + 57600c® + 76495¢° + 54529a* + 224930°
+53630” + 6840 + 36)x**" — 8640 (o +1)° (1800000 + 810000¢*+ 15857500
+1770125¢° +12397870° +5641550* +166531a” +307040” + 32040+ 144)x°***
+21600* (o +1)°(600000® + 2500000, + 4452500° + 4416250° + 2660540
+99367c’ +22388a” + 27720 +144)x°** —172800 (v +1)* (60000¢® + 2300000
+3752500° + 339875¢” +1866790* + 63599 +13111a”* +1494¢ + 72)x>***
+11520a* (o +1)*(180000¢° + 8100000° +1585750c" +1770125¢° +1239787ax°
+56415560" +1665310° +307040” + 32040 +144)x**** + 480a(ax +1)° (450000
+1912500" + 3486250° +3553750.° +221103* + 857630° +201920” + 2628
+144)x**" — 28800 (o +1)*(90000a® + 3600000¢” + 612875a°+ 5786250
+330581a* +116787¢” +248720* + 29160 +144)x****

+230400° (o +1)°(450000® +1687500” + 2698750° + 2401250° +129853¢*
+436490a” + 88960 +1004 ¢ + 48)x**** — 7680 (180000'’ + 9900000’
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+23957500® + 33558750" +30099120° +1803942¢” +730686¢* +197235¢.°
+33908a” + 33480 +144)x**** + 40(a +1)°(36000a® +154800¢”

+2861900° +2967870°+188600c* +75111c” +182840¢* + 2484«

+144)x™" —6400(r +1)* (360000® +1476000" + 258110 +250781¢”
+1476450* + 537730 +117970% +142200+ T2)x°***

+ 38400’ (o +1)*(360000® +140400¢” +2329100° +214279° +1193900*
+411970” + 85880¢” + 988ax + 48)x°*** —102400” (¢ +1)*(360000:® +1332000”
+2105900° +1855530° + 99515a* +33219a” + 6731a* + 756 + 36)x°**
+2048a* (180000¢” + 8100000® +1585750¢" +1770125¢°

+1239787¢” +5641550:*+166531a” + 30704 0” + 3204

+144)x°* — 24300/ (a +1)° (180000¢” + 8100000+ 15857500" +17701250°
+1239787¢’ + 5641550 +166531a° + 307040’ + 32040 + 144)].

As outlined in Eq. (8), each iteration u (x) represents an approximation to the exact solution of

Eq. (41). As more iterations are performed, the CTAM approximation converges progressively toward
the exact solution. The approximate series solution can be written as

u(x)=limu (x) =u,(x).
The exact solution when o= 1, as reported in (34), is
2

u(x)=— -
(4x — 4 + 5exp(—x))?

For a=1, the exact solution of Eq. (41) corresponds to the CTAM solution. As illustrated in Figure 4 (A),
CTAM solution curve behavior for different values of o, showing strong agreement with the exact
solution for oz = 1. Figure 4 (B) presents the absolute error between the 4-th CTAM iteration and the
exact solution for o= 1, which remains relatively small across the domain. Table 4 presents a detailed
comparison at specific values of x between the CTAM results and the exact solution, confirming the
method’s high precision at o =1. Moreover, comparisons for oc= 0.9, = 0.8, and o = 0.7 demonstrate
that the approach can produce accurate solutions for a variety of fractional orders.

-3
7 %10 i

T I I I I I I I
Y 0 L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4: (A) The results of the proposed method in Example 4.4 with 4-th iteration for different
a values and exact solution at o= 1. (B) The absolute errors between the proposed method and
the exact solution for o= 1.
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Table 4: A comparison between the 4-th CTAM solution and the exact solution at o =1 of Example 4.4.

x U pract Uopay (€= 1) Ecrin Uopar (€= 0.9) gy (€= 0.8) cray (&= 0.7)
0.1 -2.05325724 —2.05325724 2.3100 % 107" —2.075483 —2.108488 —2.158698
0.2 -2.07638030 —2.07638027 2.4829 x10°® —2.101997 —2.137744 —2.188443
0.3 —2.06835905 —2.06835670 2.3466 x 10°° —2.089671 —2.118381 —2.157239
0.4 -2.03334848 —2.03331138 3.7107 x 105 —2.047393 —2.066154 —2.090755
0.5 -1.97869330 -1.97845045 2.4286 x 10 —1.985344 —1.994714 —2.006262
0.6 -1.91226155 -1.91134176 9.1978 x 10 —1.912262 —1.913599 —-1.913125
0.7 -1.84061406 —1.83824633 2.3677 x 107 —1.834363 —1.828446 —1.815455
0.8 -1.76838175 —1.76390656 4.4752 x 1073 —1.755858 —1.742548 —1.715025
0.9 -1.69843155 -1.69217576 6.2558 x 107 —1.680033 —1.658409 -1.613213
1.0 -1.63231819 -1.62674042 5.5778 X 1073 -1.610121 —1.578726 —1.511991

Example 4.5. The nonlinear higher degree fractional Liénard equation is considered as [35, 36]:

DPu(t)+0.5Du +25u+25u’ =0, 1< B <2,
with the initial conditions
u(0) =0.1, ©’(0) = 0.
Eq. (52) is reformulated using CTAM as follows
L(u(x)) = D u(t), N (u(x)) =0.5Du + 25u + 25u*, G(x)=0.
The initial iteration to solve defined as
L(u,(x))=0, u,(0)=0.1, (u,),(0)=0.
Which lead to the first approximation based on the conformable derivative definition 2.1
1

uo(x) = E

Then, we obtain the next iteration from
L(u, (x)) + N (u,(x))+G(x) =0, ©,(0)=0.1, (&), (0)=0.
And by integrating both sides of Eq. (57), results in

2.525¢t"
ale-1)"
Continuing this process, the following iteration is defined by

L(u,(x)) + N (w,(x))+G(x) =0, u,(0)=0.1, (u,) (0)=0.

u,(x)=0.1-

After applying integration of both sides of Eq. (59) and the fundamental conformable derivative prop-

erties 2.1, yields

1
u,(x) =
-1+ 0) ot (- o ot (=22 oD 4+ (- T2TLASEE9BIE69 )
a8 a4 ¥ T 281474976 710659
21242647865201“a° ., 1030301 1030301 23696923 7212107 _1030301c
x| — +( +o(- +o( +a(- + )
399822408599 191520 61440 ' 491520 122880 40960
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510577813299 + o
38824134714221
+t“2“a2(175217821074 o
258708615947

1111 ol 10411000725475 N a(4916305898044 N
7680 17592186044367 4398046511005
4468054469617 2194833742959 135239
- + o( +o(— +
549755812853 57869032099 1536
509747 N 8936108949637

M) + £+ ( 2042311253398 N 3343461164686
7680 549755813493

a —

38824134718061 ( 4539918978923

+0!(148067565873822_Hl(_3999146308604I05(2107347448320+a(__48121958908668
35184372088829 314146179221 95609704879 2199023255537

20359290307437 118454052699114¢ 1 1 27561091469588

- Yo))))) +tor” (—— + a(——+ a(

1759218604423  46912496118461 480 32 140737488355343

161 661 167 186477172070803

+ o +o(— +o( + (- 67
240 480 96 140737488355323 120

3737 10lax

- + o
3840 320 o))
551359

o
5120

+t* ot (-

(

+o(

+(

(

+a(—

(04
+ E)Oﬂ)))))))}

According to Eq. (8), each iteration u (x) approaches the solution of Eq. (52), and the approximate
solution 1s expressed as

u(x) = %1&} u, (x) =u,(x).

The exact analytical solution for o= 2, is given by [35, 36]

u(t)=0.1-1.2625¢t> + 0.2104¢° + 2.6828¢* — 0.5392t° — 2.6563t° + 0.6152¢".

The specific case of o = 2 shows that the exact solution in Eq. (62) aligns closely with the CTAM
solution. Figure 5 (A) illustrates the CTAM solution compared with the exact solution at o= 2 and
for different o values. Figure 5 (B) presents the absolute error between the 3-rd iteration CTAM
solution and the exact solution at o = 2. Table 5 provides a comparison between the 3-rd itera-
tion of CTAM, the previous methods in the studies, and the exact solution at various ¢ values for
o = 2, along with CTAM results for various oo = 1.9, a = 1.8, and o = 1.7 showing that the method
maintains robust accuracy across different fractional orders, and provide a better error comparing
to the result in [36]. The semi-analytical solution approaches the exact solution as the number of
iterations grows.
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Figure 5: (A) The results of the proposed method in Example 4.5 with 3-rd iteration for different
o values and exact solution at = 2. (B) The absolute errors between the proposed method and
the exact solution for o = 2.
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Table 5: A comparison between the 3-rd CTAM solution and the exact solution at ov= 2 of
Example 4.5.
uCTAM uCTAM uCTAM uCTAM

t 7 (x=2) E E. (x=1.9) (x=1.8) (ax=1.7)
0.00 0.100000 0.100000 0 0.00000 0.100000 0.100000 0.100000
0.01 0.099874 0.099874 1.646x 10'* 7.0821x 107  0.099767 0.099562 0.099165
0.02 0.099497 0.099497 1.220x 10'° 5.4931 x10°¢ 0.099133 0.098484 0.097311
0.03 0.098872 0.098872 3.377x 107 1.7960 x 10® 0.098134 0.096875 0.094692
0.04 0.098000 0.098000 4.859x 107 4.1211x10° 0.096791 0.094790 0.091429
0.05 0.096887 0.096887 2.080 x 107! 7.7852 x 10  0.095122 0.092271 0.087606
0.06 0.095535 0.095535 2.477x10° 1.3001 x10* 0.093141 0.089353 0.083290
0.07 0.093949 0.093949 9.269x 10 1.9934 x 10*  0.090863 0.086067 0.078538
0.08 0.092135 0.092135 2.433x10® 2.8706x10* 0.088302 0.082441 0.073401
0.09 0.090099 0.090099 5.369%x10® 3.9394 x 10*  0.085472 0.078503 0.067926
0.10 0.087847 0.087846 1.060 x 107 5.2036 x 10*  0.082386 0.074277 0.062155

Example 4.6. The time-fractional order of the nonlinear Fisher’s equation is considered as [37]:

9u(x,t) _ 2 u(x,t)

at”

with the initial condition

dx*

u(x,0) =

1

1+eE

+u’(x,t)(1 - u(x,t), O{a<1,xe1,t)0.

In this example, the CTAM approach is applied to a time-fractional nonlinear PDE represented by
Eq. (63), which is reformulated as

L) = W N (ux,0)) =

The primary issue to address is

L(u,(x,t)) =0, u,(x,0)=

Which yields the first approximation as

u,(x,t) =

2°u(x,t)
dx®

1+eE

1

1+e?

The following formula can be used to calculate the second iteration

L(u,(x,8)) + N (u,(x,8)) + g(x,t) =0, u,(x,0) =

1

1+e$

+u’(x,t) 1 —u(x,t)), g(x,t)=0.
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Consequently, after integration both sides of Eq. (68), results in

X

2a+eﬁ(2a+t”)

2
2a[ ﬁ+1]

The following iteration is then produced by solving

u,(x,t) =

1

1+e?
By applying the conformable derivative properties 2.1 and integrating both sides of Eq. (70), leads to

L(u,(x,t)) + N (u,(x,8)) + g(x,t) =0, u,(x,0) =

1 5x
u,(x,t) = . {960:“ +120%e"? (80:2 +1% + 4oct“)
96a'| e +1
X 3x

+120%e " (400” - ** + dot” )+ e (9600" — 8art™ — 3t' +2880't" )
+ 8™ (600 + Bt™ + 1™ + 240°t" ) +80re™™ (1200 - Bat™ — 26 + 240’ |.

Each iteration of u (x, t) is an approximation to the solution of Eq. (63) solution, as shown by Eq. (8).
With increasing iterations, the semi-analytical solution converges to the exact solution. Thus, the
analytical solution can be approximated by

u(x,t)=limu (x,t) =u,(x,t).
The exact solution for oc= 1, is given by [37]

u(x,t) = 1

x—tk *

l1+e™

The analytical results for @ = 1 demonstrate that the CTAM solution that precisely matches the
exact solution in Eq. (63). Notably, the CTAM method is also effective for solving FPDEs. Figure 6
the CTAM results with the exact solution across multiple views. As shown in Subfigures (A) and (B)
shows alignment between the analytical and CTAM approximation. Figures 6 (C)-(E) indicate that
for fixed values of x and ¢, CTAM results remain extremely close the exact solution across o values,
however the absolute error surface in Figure 6 (F) further confirms the high accuracy of the approach,
with minimal error distributed across space and time. Table 6 provides a comparison of the 2-nd itera-
tion CTAM solution with the exact solution for ¢ =1 at ¢ = 0.1, under two different parameters, £ =0.1
and k=+/2/ 2, the CTAM solution demonstrates good agreement with the exact solution, as indicated
by the small errors. The results show that the accuracy of the CTAM method improves, and the CTAM
solution approaches the exact solution as the number of iterations increases. Demonstrating that the
CTAM can produce remarkably accurate solutions in both spatial and temporal dimensions, making
it perfectly suited for addressing FPDEs.




Alrzai
qi S.F.
JF.etal, R
. eSultS .

in Nonlinear A

nal. 8 (2

025)

) 140-1

58

156

e resul
o ts
values an;f CTAM m
exact solut?thod for diff
on at x = erent
= 1

‘\\\\\\\\\\\

T
A \\\\\\\\\\\\\\\\\\\\\ RN
\\\\ \\\ \\\\\\\\\\\\\\\\\\\

\\\\\\\\\\ \\\\\\\\\\\\
\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\\\\\\\\\\\\\\ T

\\\\\\\\\\\\\\\\\\\\\\\\ \\\ \\ \

\\\\\\\\\ i \\ \
\\\\\\ i \\\\\\ \ \

\\\\\\\\\\\\\\ I i \\\\\\\\\\\\\\\
\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\ DI
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ DI \\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\ I
\\\\\\\\\\\\\\\\\\\\\\\\\\ \
\\\\\\\\\\\\\\

\\\\\\\\\\\\
\\\\\\\“\\\\s \

0.8

0.6

0.5

03

0.2

(E) C
omparative of th
e

t=1wi
with v ex
i a
arious o Valitesolution at
S.

W \\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\ T \\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\
D \\\\\\\\\\\ \\\ T
T \\ \
\\\\\\\\\\\

\\\\\
T \\\\\
\\\\\\
e \\\\\\\\ \
\\\\\\\\\\\\\\\\\\ Y
\\\\\\\\\\\\\\

I U
\\\\\\\\\\\\\ “
\\\\\\\\\\\\\\\\\\\ \
\\\\\\\
T \\\\\\ I
\\\\\\\\\\\\\\\

T
\ N \\\\\\\\\\\\
\\ \\\\\\\\\\\\

\\\\\\\\\\

T \\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\
\\\\\\\ TN \\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\\\
DI \\\\\\\\\\\\\\\\_
\\\ N

\\\\\\\\\\\\
T N A

\\\\\\\\\\\\\\\ \

(D) C
TAM
soluti soluti
ution for different x v
ues Wh exact
ent=
=1.

e abSOl
u
te errors betw

i

[l
//////
/////'"

/)

/)

/'
i

Figur
e6: Ab
ehave
S Of CTA
alytica
1 . .
solution u(x,?) solution and CT
,t) of Exa AM
mple 4 '
6asa
functi
ion of ti
me t an
d

s
pace x, whe
nk=%=
2.



Alrzqi S.F. et al., Results in Nonlinear Anal. 8 (2025), 140-158 157

Table 6: A comparison between the 2-nd CTAM solution, and the exact solution at =1, and ¢ = 0.1
of Example 4.6.

k=0.1 k=2

x uExaCt uCTAM ECTAM uExact uCTAM ECTAM

0 0501768 0512497  1.072960 x 102 0.512497 0512497  4.947900 x 10
1 0331804  0.341391  9.587100 x 10  0.341390  0.341391  1.543440 x 106
2 0.196685  0.203557  6.871900x 10  0.203556  0.203557  6.789530 X 10~
3 0107720  0.111915  4.195850x 10  0.111916  0.111915  3.320900 x 10"
4 0056181  0.058501  2.319580x 10°  0.058501  0.058501  5.629650 x 10"
5 0028513  0.029726  1.213090 x 10  0.029727  0.029726  4.254860 X 10~
6 0014265 0014881  6.161560x 10  0.014881  0.014881  2.539760 x 10~
7 0.007085  0.007393  3.083360 x 10  0.007393  0.007393  1.371160 X 10°7
8  0.003506  0.003659  1.531500x 10  0.003659  0.003659  7.064640 x 10
9 0001732  0.001808  7.578800 x 10>  0.001808  0.001808  3.559070 x 10
10 0.000855  0.000892  3.743570 x 10°  0.000892  0.000892  1.773500 X 10°¢

5. Conclusions

The conformable Temimi-Ansari method (CTAM) has been presented as a novel semi-analytical
technique for solving FDEs. The efficiency of the method was evaluated through the solution of
various examples of nonlinear FDEs, with its effectiveness validated by calculating absolute errors
and comparing them to the previous studies. Results were presented using figures and tables using
Mathematica and MATLAB to enhance computational speed and accuracy. Owing to CTAM simplicity,
adaptability, accuracy, and the smaller error compared to previous studies, the approach demon-
strates substantial potential for application to real-world problems that are represented by related
classes of FDEs, making it a promising method for future research across a wide range of scientific
and engineering applications.
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