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Abstract
Partial differential equations (PDEs) provide mathematical models to describe real phenomena such 
as heat conduction, wave propagation, and many other scientific disciplines. A vast array of methods 
has been used to solve PDEs. Among them, multistep block methods, along with mesh-based tech-
niques, have been utilized to discretize the time variables and the partial derivatives with respect 
to the spatial variable in the PDE. However, this approach encounters challenges such as disconti-
nuities, high computational cost, and time demands. In this context, the current work proposes an 
Optimized Meshless Block Method (OMBM) for solving time-dependent PDEs. The method integrates 
Radial Basis Function–Finite Difference (RBF-FD) method for spatial discretization with a two-step 
hybrid block method for time integration. This combination leverages the accuracy and stability of 
block methods, along with the geometric flexibility and reduced computational cost offered by mesh-
less approaches. The approach is strengthened by a strategic choice of shape parameter, which mit-
igates the well-known sensitivity issue inherent to RBFs, thereby enhancing the overall robustness 
and reliability of the numerical solution across varying spatial resolutions. Various test problems are 
examined, and the simulation results are compared with exact solutions and prior studies to demon-
strate the superior performance and accuracy of the proposed approach.
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1. Introduction

The resolution process of PDEs involves distinct phases. The first phase is the discretization of the 
continuous problem, which represents the problem spatially and temporally using discrete points or 
nodes. In case these discrete nodes are following a predefined arrangement with an established con-
nectivity between them, the discretization method is called the mesh-based method, where the grid 
(mesh) is generated. This mesh can be regular or structured if the points appear in a uniform arrange-
ment (regular pattern), and irregular if not the case as shown in Figure 1. On the other hand, if the 
scattered points are distributed without a fixed grid and predefined connectivity, the discretization is 
made by a meshless method, which is expanded in the next section. Discretization approximates deriv-
atives at those discrete points using the methods like finite differences, which transform the PDE into 
a system of ODEs during semi-discretization. Subsequently, solution methods like Runge-Kutta [1] 
or block methods [2] are applied as ODE solvers, leading to a set of discrete algebraic equations. Full 
discretization directly yields this system, which is then solved to get the numerical solution. The next 
phase includes the analysis, interpretation, and visualization of results. To assess and validate the 
performance of the numerical method, a comparison of the numerical results is employed with known 
analytical solutions. Furthermore, an optimization task fine-tunes parameters or algorithms, enhanc-
ing the efficiency and convergence of this numerical method. Finally, the resolution process concludes 
with comparing the results with other methods, validating the method’s performance. This structured 
flow ensures a systematic and comprehensive approach for solving PDEs numerically.

Therefore, discretization is a fundamental step in the process of approximating PDEs. It is the 
process of approximating a continuous mathematical model by dividing the problem into a finite set 
of discrete elements or points. This phase has a crucial impact on the effectiveness of the numerical 
method; it runs through the mesh-based method or meshless method. The first one relies on regular 
grid generation, a process that is often time-consuming and challenging, particularly for complex 
geometries, such as the FDM [4], FEM [5], FVM [6], boundary element method (BEM) [7], spectral 
method (SM) [8], and domain decomposition methods (DDM) [9]. In contrast, the meshless methods 
(MMs) eliminate the need for predefined grids or meshes, they use scattered or irregularly distributed 
points (nodes) to approximate the solution to PDEs. This feature provides more flexibility in handling 
complex geometry and leads to higher accuracy, with less consuming time [10] and less computational 
cost [11].

Figure 1: Examples of Meshless and Mesh-based Methods [3]
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1.1 Meshless Methods 

Partial differential equations (PDEs) arise in a wide range of scientific and engineering prob-
lems, and a variety of numerical methods have been developed to solve them. Among these, mesh-
less methods—such as the moving least squares method [12], diffuse element method (DEM) [13], 
element-free Galerkin method (EFGM) [14], hp-clouds [15], partition of unity finite element method 
(PU-FEM)  [16], reproducing kernel particle method (RKPM) [17], meshless local Petrov–Galerkin 
(MLPG) method  [18], point collocation method (PCM) [19], and radial basis function (RBF) meth-
ods [20]—offer flexibility in handling complex geometries without the need for predefined meshes.

Meshless methods approximate the solution using scattered nodes rather than a structured 
mesh [22]. This allows greater adaptability to irregular domains and moving boundaries. For exam-
ple, the smooth particle hydrodynamics (SPH) method [21] is known for its conservation properties 
and efficiency in large-scale and multiphase problems, though it suffers from stability and consis-
tency issues. To address such limitations, refined methods have been introduced—e.g., the corrected 
SPH (or RKPM) [17] and EFG methods [14], which use moving least squares (MLS) interpolation to 
improve accuracy and stability.

Despite ongoing advancements, meshless methods still face several challenges. Many lack rigorous 
mathematical foundations, including established global error estimates and comprehensive stabil-
ity analyses [23,24]. Practical difficulties also remain in areas such as modeling complex fracture 
patterns, high computational costs, and the efficient generation of node distributions. Furthermore, 
while strong form collocation offers computational advantages, it has received less attention com-
pared to weak form (e.g., Galerkin) meshfree approaches, especially in fields like fracture mechanics 
and large deformation analysis [25].

One of the most promising meshless techniques is the radial basis function (RBF) method, which 
uses distance-based interpolation functions and is inherently mesh-independent [20]. Its simplicity in 
arbitrary spatial dimensions makes it attractive, although global RBF approaches suffer from compu-
tational inefficiencies as the number of nodes increases [26]. To mitigate this, localized RBF methods 
have been developed, including RBF-FD [28–30], Hermite-type radial point interpolation [31], local 
MQ differential quadrature (MQ-DQ) [32,33], subdomain RBF collocation [34], and integrated local/
global RBF schemes [35,36]. Comprehensive reviews of these developments are found in [37,38].

The RBF-FD method, first proposed by Tolstykh [39] and later developed in [40], combines the 
accuracy of RBF interpolation with the computational efficiency of finite differences. It replaces glob-
ally supported RBFs with localized stencils, reducing the computational burden while preserving 
meshless flexibility. Despite its benefits, RBF-FD still faces open challenges, especially in coupling 
with time integration schemes and in handling large-scale problems [41].

1.2 Block Methods in Solving PDEs

Initially, block methods were firstly proposed by Milne [42] as self-starting multistep methods to get 
approximate solutions for a system of first order ODEs. They generate approximations simultane-
ously at multiple points, which saves computational time while preserving accuracy [43]. In these 
methods, data from several past points is required to get several solutions at future point. This pow-
erful feature makes it a good alternative for solving ODEs, especially for stiff problems [44]. There are 
three different ways to derive the block methods, that are interpolation, Taylor series expansion, and 
numerical integration [43]. For the -th order IVP ( )( 1), , , . . . ,m my f x y y y -= ¢ , block methods with any 
desired order and step length can be derived using the procedure described in [45].
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where: ( 1,2, , ) ( 1,2, , ) ( 1,2, , )1 , 2 , . . . ,( 1) ,k k ka mx x x= ¼ = ¼ = ¼= -

if  and wia are constants, h is the step-size, k is the steplength and m is the order of the ODE.
There has been a limited amount of research in the literature addressing the solution of PDEs 

using block methods, the PDE is first discretized in space through the semi-discretization, which 
approximates the space derivatives using other mesh-based methods such as the finite difference 
method [46-48], B-spline approach [2], and compact difference method by [49]. This process results in 
a system of ODEs to be solved using the block method. These employed methods for spatial discret-
ization are falling under the mesh-based category with its limitations, which open the door of using 
meshless methods rather than mesh-based methods in the discretization phase. 

1.3 Combination of Block Methods and MMs

MMs have been introduced to eliminate the mesh-generating drawbacks such as discontinuities, com-
putational cost and time [10,38,50]. However, as mentioned above it’s important to note that the 
meshless methods still face some limitations including problems in stability compared to the mesh-
based methods [24], and their accuracy can be sensitive to the choice of shape functions and basic 
functions. Therefore, by combining the accuracy and stability advantages of block methods with the 
capability of meshless methods to efficiently handle complex geometries at reduced computational 
cost and time, the overall quality of PDE solutions can be significantly improved. While block methods 
are valuable for ODEs, they are not often used and are not typically employed as standalone methods 
for solving PDEs [49]. They have been used with mesh-based methods, but with meshless methods the 
only work that has used this idea is presented in [51].

 Meshless method (RBF-DQ) is combined with an optimized one-step hybrid block method, provid-
ing an efficient approach to achieve high accuracy while ensuring stability with less effort. Overall, 
the block method can be a powerful tool for solving PDEs numerically, but its effectiveness can highly 
depend on the chosen spatial discretization method, as it has a significant impact on the accuracy and 
stability of the solution [52,53]. 

The present work aims to extend the role of the block methods in solving PDEs by employing an 
optimized two-step hybrid block method with two intra-step points (0 < r < 1 < s < 2), coupled with 
meshless method RBF-FD with optimal shape parameter value, which helps to enhance stability and 
accuracy while reducing computational time and improving performance in handling complex geome-
tries. Also, the proposed method extracts the optimal value of both step-size of the block method and 
shape parameter of the meshless method, to get an optimized method with better performance.

2. Methodology 

This section describes the procedure of the proposed method, which mainly has been presented 
through two subsections. The first section discusses the meshless RBF-FD method that is employed 
to semi-discretize the PDE in spatial domain, which results in a system of ordinary differential equa-
tions (ODEs) with time as variable. The second section discusses how an optimized two-step hybrid 
block method with two off points is derived and then applied as a time-stepping algorithm to solve the 
former ODEs system. These two phases provide a system of algebraic equations can then be solved to 
give the final solution of the PDE.

2.1 Meshless RBF-FD Method

In the global RBF approach for numerically solving a PDE, interpolation is performed using all col-
location points throughout the entire domain and boundary. As a result, the method often produces 
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ill-conditioned matrices, leading to unstable and computationally demanding calculations, which 
makes these RBF collocation methods unsuitable for large-scale problems. To address these chal-
lenges, the RBF-FD method was developed as a local meshfree approach. 

The discrete representation of a function u(x) using the RBF interpolation function can be con-
structed from N scattered nodes and approximated by the following linear combination:

	 ( ) ( ) ( )
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where ai are the interpolation coefficients, and ( )i jf -x x  denotes radial basis functions such 
as the multiquadric (MQ), inverse multiquadric (IMQ), and Gaussian functions [54, 55]. Here, ×  
represents the standard Euclidean norm. In the present study, the multiquadric (MQ) radial basis 
function (see Eq. (4)) is employed.

	 ( ) 2 2 ,i j i jx x x x cf - = - + � (4)

where c > 0 is the shape parameter to be selected.
Consider the PDE boundary value problem with Dirichlet boundary conditions
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where  denotes the space differential operator, f and g are known functions.
For solving Eq. 5, the key step in RBF-FD calculations is to determine each node within a uniform 

set of N nodes 1{ }N
i ix W= Î  in the spatial domain Ω, with a step size 1i ih x x+= - . Each node xi is associ-

ated with n (n = 3 in this paper) nearest neighbouring points 1 1{ } { }n N
j j i ix x= =Í . For example, the subset 

1 1{ , , }i i ix x x- +  with three elements is assigned to xi.
The approximation RBF-FD formula for the derivative of the function u(x,t) at the node xi in Eq. (5) 

can be presented as follows[29, 56, 57]:
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where wj are the weighted coefficients to be determined by solving the following linear system of n 
equations in m order of derivative:
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Eq. 7 can also be represented in form of matrices Aw = B, where the weighted coefficients matrix w 
can be found by solving w = A–1B,
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For the first derivative d
dx

=
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For the second derivative 
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This process yields a system of initial value problems (IVPs), which are then solved using a time-
stepping scheme specifically, the optimized two-step hybrid block method employed in our study.

Regarding the order of the spatial discretization, a Taylor series expansion of the RBF-FD stencil 
about the node xi yields the local truncation error for the first spatial derivative as

2 2 4
(1) (3) 4

2 4( ) ,
6 2 ( ) ( )i i i
h h hx u u O h

c h c h
æ ö¢= + + +ç ÷
è ø



Similarly, for the second spatial derivative, the truncation error takes the form
2

(2) 2 (4) 4
1 2 2( ) ( ).

( )i i i
hx C h u C u O h

c h
¢¢= + +

where C1 and C2 are constants independent of the grid spacing. In both cases, the leading error terms 
are proportional to h2, confirming that the standard RBF-FD discretization based on the three-node 
stencil achieves second-order accuracy in space.
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2.2. Optimal Shape Parameter

While RBFs demonstrate exceptional generalization capabilities, a significant challenge arises in 
handling partial differentiation. Selecting the appropriate shape parameters for the radial basis func-
tion is one of these critical challenges, as this parameter strongly influences the RBF approximation. 
Choosing suitable values greatly enhances the stability and accuracy of the computational results 
[57, 58]. As motioned in [59], there is a trade-off between interpolation error and matrix conditioning: 
reducing the error often results in poorly conditioned matrices, while improving matrix conditioning 
usually increases the error. Larger shape parameters improve matrix conditioning but reduce accu-
racy. [60] explored how the accuracy of solving convective PDEs is influenced by the RBF type, shape 
parameter, and time integration length.

Many efforts have been made to solve this problem. For instance, an early adaptive approach was 

introduced by Hardy [61], suggesting 1
0.815d

e = , where d is the average distance to the nearest 

neighbour. 
1

1 ,
N

i
i

d d N
N =

= å  is the total number of interpolation nodes and di is the distance of node i 

to its nearest neighbour. After that, Franke [62] proposed an adaptive shape parameter, 0.8 ,N
D

e =

where D represents the diameter of the smallest circle that encompasses all the nodes. Wahba [63] 
presented a generalized cross-validation (GCV). Carlson and Foley used RMS error to determine 
ε  [64]. Stein maximized the likelihood function in [65]. A genetic algorithm to determine ε for the 
solution of ODEs was proposed in [66].  Some articles focused on identifying an interval for the shape 
parameter, such as [67], which introduced an algorithm to find a variable shape parameter using a 
valid interval. [68] involves adding a loop over ε to find an interval rather than a single value, without 
minimizing or estimating an error function, where the suitable values of ε are identified by consider-
ing the actual convergence behaviour of the problem. A particle swarm optimization algorithm was 
proposed by Javad [69] to find a good shape parameter. Alternative methods focus on locally modifying 
the shape parameters. For instance, in [70], prediction functions are utilized to evaluate the interpo-
lation error and determine the optimal shape parameter. In [71], a multilevel algorithm is introduced 
to find a near-optimal value. Another approach to tackle this issue is by exploring shape parameter 
expansions using advanced techniques, such as allowing complex values or applying efficient rational 
approximation methods [72, 73]. A new variable shape parameter method with neural networks was 
suggested in [60]. The study made in [30] focuses on selecting the optimal shape parameter value 
based on minimizing the approximation error when solving a PDE using the local RBF-FD method.

Following the technique introduced in [51], the proposed OMBM selects the RBF shape parameter 
c > 0  from a prescribed interval by minimizing the mismatch between the exact spatial derivative of 
the initial condition and its local RBF-FD approximation. Let

	 ( ) 1

2
( ) ( ,0) ( ,0) ,N

i c i i
r c Du x u x -

=
= -  � (14)

	 min max

*
[ , ] ,arg min ( )c c cc r cÎ= � (15)

where D is the true spatial differentiation operator and c  is the local RBF-FD operator parameter-
ized by c. In practice, c* is grid-dependent and varies with the number of nodes N via the spatial step 

max min( ) / ( 1)h x x N= - - ; thus c* should be re-estimated whenever N (and hence h) changes.

Algorithm 1 Pseudocode: Optimal Shape Parameter (OMBM)
1: Inputs: ( ,0),{ }, [ ,   ], , .i min maxu x c c norm tol×
2: i) Grid setup .1
3:	  ( ) / ( 1).max minh x x N¬ - -
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4: ii) Candidate search
5: linspace linspace ( ,   , ).min maxc c M¬C
6: iii) Error evaluation
7: For each    cÎC  do
8:      Compute ( )    ( ,0) ( ,0)i c iE c Du x L u x= -  over interior nodes. \\
9: End for
10: iv) Selection and refinement
11: * argmin_{       }  ( ).c c E c¬ ÎC
12: * *[ ,   ] [ (1    ), (1    )],    linspace ( ,   , ).min max min maxc c c c c c Mr r¬ - + ¬C
13: v) Stopping and output
14: If relative changes of c* and E(c) < tol.
15:     Return c* (grid-dependent via N through h).
16: Else go to step 6.

Optimal shape parameter selection reduces RBF sensitivity by balancing accuracy and stability. 
This ensures consistent performance across different spatial resolutions, making error less dependent 
on the number of nodes. The method maintains spectral convergence while providing reliable results 
for diverse computational applications.

2.3. Optimized two-step hybrid block Method for Time integration}

The two-step block method has proven to be an effective approach for solving initial-value problems, 
due to its notable features, including stability, and convergence [74]. The optimized two-step hybrid 
block method with two intra-step grid points (0 < r < 1 < s < 2) has been introduced in [75], which 
addressed the balance between accuracy and grid resolution, further enhanced the strengths of the 
block method, particularly its accuracy.

Thus, the optimized two-step hybrid block approach can be considered as a good choice to be a 
stepping time method to approximate the change of the function u(x,t) in time. The time stepping is 
described by a first-order initial value problems (ODEs), of the form:

	 0 0( ) ( , ), ( ) .u t f t u u t u¢ = = � (16)

The solution to the problem in Eq. (16) is approximated using the following power series expansion:
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where, v indicates the number of interpolation points, which corresponds to the order of the differential 
equation, m denotes the number of collocation points, while aj are real coefficients to be determined.

The first derivative of Eq. (17):
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To derive this method, Eq. (17) is interpolated at tn (m = 1), while Eq. (18) is collocated at the points , 
1 2, , , , and,  (  = 5)n n r n n s nt t t t t v+ + + +  as shown in Figure 2.

Figure 2: Interpolation and collocation strategy for two step hybrid block method with two off-step 
points for solving first order ODEs.



Charmouti B et al., Results in Nonlinear Anal. 8 (2025), 109–127� 117

This produces a system of equations which can be written in a matrix form as below:
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The Gaussian elimination method is applied on Eq. (19) to find the coefficients a0, a1, a2, a3, a4, and a5, 
which are then substituted into Eq. (17) to give an implicit scheme of the form:
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Evaluating Eq. (20) at the non-interpolating point 1 2, , ,  and n r n n s nt t t t+ + + +  yields the hybrid block 
method represented by the following set of four equations:
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where k denotes the fixed step-size in time, r and s are determined by optimizing the local truncation 
errors for un+1 and un+2 in Eq. (22) and Eq. (24) respectively. This leads to the following expressions:

	 ( )1 3 3 0.42265,
3
2 1.57735, (0 1 2).

r

s r r s

= - »

= - » < < < <
� (25)

Substituting the chosen intra-step points r and s, and replacing 1 2, , ,n r n n s nf f f f+ + + +  in Eqs. (21–24) with 
their RBF-FD spatial approximations from Eq. (6), yields the following fully discrete scheme of the 
proposed method, ready for implementation. The resulting nonlinear algebraic system is then solved 
in MATLAB.

Within one 4-step block let

1 2 3 4, 1, , 2r s= = = =   

Index the five-time levels by

0 , 1 , 2 1, 3 , 4 2n n r n n s n= « = « + = « + = « + = « +� � � � �

With time step k, the four equations at each interior node can be written for m = 1, ..., 4 as
The coefficients ,m la  are defined as follows:

	 , , ,0 ,
120 120 120

mn n n n
m m m m

m

k k kI a u a u u a ut+ +

¹

æ ö æ ö- + - = +ç ÷ ç ÷è ø è ø
å �

�
�

   � (26)

	● Row m = 1 (equation at n + n)
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	● Row m = 2 (equation at n + 1)
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	● Row m = 3 (equation at n + s)
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	● Row m = 4 (equation at n + 2)
4,0 4,1 4,2 4,3 4,416, 72, 64, 72, 16.a a a a a= = = = =

The optimized two-step hybrid block method with two off-step points can be written in the compact 
form

1 0 1 1 0 1 ,n n n nA U A U k B F B F- -= + +é ùë û

where A1 = I4, A0 is a matrix with ones in the first column, and B0 and B1 are coefficient matrices con-
taining rational and irrational terms.

To determine the order of the method, the associated linear difference operator is constructed and 
expanded in a Taylor series about t = tn, yielding

2
0 1 2( , ) ( ) ( ) ( ) .L u t k C u t C ku t C k u t¢ ¢¢= + + +é ùë û �

The method is said to be of order p if 0 1 10 and 0p pC C C C += = = = ¹� . For the present method, the 
computed error constants satisfy

0 1 2 3 4 5 6

1
4860

10, 0.4860
0
0

C C C C C C C

é ù
ê ú
ê ú
ê ú= = = = = = = ¹ê ú
ê ú
ê ú
ê úë û

Consequently,
6 (6) 7

6( , ) ( ) ( ),L u t k C k u t k= +é ùë û 
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which confirms that the optimized two-step hybrid block method is of order p = 5 and satisfies the 
consistency condition for linear multistep methods.

Combining the spatial and temporal discretization, the overall accuracy of the fully discrete scheme 
can be established. The RBF-FD approximation employed for the spatial derivatives is second-order 
accurate, yielding a local spatial truncation error of order 2( )h , while the two-step hybrid block 
method used for time integration possesses a fifth-order local truncation error of order 5( )k .

Although the numerical experiments in this work focus on one-dimensional problems, the proposed 
method naturally extends to higher-dimensional PDEs. The time discretization based on the two-step 
hybrid block method is independent of the spatial dimension, while the spatial discretization can be 
directly generalized using the RBF-FD framework by employing multi-dimensional local stencils in 

2 3 or � � . Therefore, the proposed approach remains applicable to higher-dimensional problems with-
out modification of the time-integration strategy.

3. Numerical Results and Discussion

The effectiveness of the proposed method is evaluated through four numerical examples, demonstrat-
ing its efficiency and accuracy across different problem types. The first two examples focus on solving 
the one-dimensional heat equation under various initial and boundary conditions, highlighting the 
method’s performance in handling parabolic partial differential equations. The last two examples 
address the coupled Burgers’ equations, a nonlinear system commonly encountered in fluid dynamics 
and other applications, showcasing the method’s ability to handle complex, multi-variable problems.

The evaluation is conducted by comparing the numerical results with the exact solutions, using the 
L2 and L¥ error norms. These error metrics provide a comprehensive measure of the method’s accu-
racy, with L2 capturing the overall deviation and L¥ emphasizing the maximum error at any given 
point. The formulas for these error norms are as follows:

	
2exact num exact num

2 02

exact num exact num

,

m ,ax

N
i i i ii

i i i ii

L u u h u u

L u u u u
=

¥ ¥

- = -

-= - =

= å � (27)

where exact
iu  and num

iu  denote the exact and approximate solutions evaluated at (xi, t).

Test problem 1: Consider the nonlinear viscous Burgers’ equation [76]:
Use a different font package

	 , 0t xx xu u uu t= - ³ � (28)

Initial conditions:

	
sin( )

4
cos( ) cos(2 )

4 4
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x x
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p p

pp +
=

+ +
 � (29)

Boundary conditions:

	 (0, ) (2, ) 0,u t u t= = � (30)

The exact solution is:

	
2 2 2 2

2 2 2 2
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e x eu x t
e e
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 

 
 � (31)

We conduct experiments with 80 grid points and varied values of parameters ε. Solutions at t = 0.1 
and t = 1 are benchmarked against the methods in [76] and [77]; Table 1 reports the L¥ error. Figure 3 
provides a two-dimensional view of the solution’s evolution over time. Across all  values, the proposed 
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method achieves lower errors while using fewer time steps as in [76], showing a modest advantage for 
2 3 4 510 , 10 , 10 ,  and 10- - - -= = = =     a markedly larger one for 610-= .

Figure 3: 2D visualization of numerical solution for u of problem 1 at 210-=   
with different values of t.

Table 1: L¥ Error comparison for u in Problem 1 taking different values of .


Mittal and Rohila [77] Mehta et al., [76] Present method (OMBM)
t = 0.1 t = 1 t = 0.1 t = 1 t = 0.1 t = 1

10–2 4.67 × 10–3 3.08 × 10–2 4.26 × 10–3 3.08 × 10–2 1.45 × 10–3 6.82 × 10–3

10–3 4.90 × 10–5 3.95 × 10–4 4.46 × 10–5 4.30 × 10–4 2.68 × 10–5 2.24 × 10–4

10–4 4.92 × 10–7 4.46 × 10–6 4.48 × 10–7 4.46 × 10–6 2.85 × 10–7 2.54 × 10–6

10–5 4.93 × 10–9 4.48 × 10–8 4.48 × 10–9 4.48 × 10–8 8.36 × 10–10 7.52 × 10–9

10–6 4.53 × 10–11 4.48 × 10–10 4.48 × 10–11 4.48 × 10–10 4.46 × 10–15 4.01 × 10–14

Nt 100 100 2 2 2 2

Test problem 2: Consider the coupled Burgers equation [78]:

	
2 ( ) 0,
2 ( ) 0,

t xx x x

t xx x x

u u uu uv
v v vv uv

- - + =
- - + =

� (32)

Initial conditions:

	 ( ,0) ( ,0) sin( ),u x v x x xp p= = - £ £ � (33)
Boundary conditions:

	
( , ) ( , ) 0, 0
( , ) ( , ) 0, 0

u t u t t T
v t v t t T

p p
p p

- = = £ £
- = = £ £

� (34)

The exact solution is:

	 ( , ) ( , ) sin( ), , 0tu x t v x t e x x t Tp p-= = - £ £ £ £ � (35)
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Problem 2 addresses solving the coupled Burgers’ equations with specified initial and boundary 
conditions using the proposed method. Figure 4 and Figure 5 illustrate both 3-D and 2-D visualiza-
tions of the exact and numerical solutions for u. Table 2 compares OMBM with the method from [51] 
at t = 0.1 for k = 0.1, varying values of N and c. Table 3 presents a comparison between OMBM and 
the methods in [79] at t = 0.5, considering k = 0.1, N = 30 (less grid points) for OMBM method and 
N = 130 for the methods in [79]. 

Figure 4: 3D visualization of exact (analytical) and numerical solution for u of problem 2 with  
k = 0.1, t = 1

Figure 5: 2D visualization of exact (analytical) and numerical solution for u of problem 2 with 
k = 0.1, t = 1

Table 2: Error comparison for u in Problem 2 at t = 0.1 for k =0.1 and different values of N

N
Kaur et al., [51]

c
Present method (OMBM)

L¥ L2 L¥ L2

10 1.8209 × 10–4 3.3934 × 10–4 3.4014 8.92808 × 10–12 1.60687 × 10–11

20 7.9202 × 10–6 1.4031 × 10–5 3.5285 9.22606 × 10–12 1.54086 × 10–11

30 9.2190 × 10–10 1.0031 × 10–9 3.5493 8.31268 × 10–12 1.47554 × 10–11
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Test problem 3: Consider the following coupled Burgers’ equation of the form:

	
2 ( ) 0,
2 ( ) 0,

t xx x x

t xx x x

u u uu uv
v v vv uv

- + - =
- + - =



� (36)

Initial conditions:
	 ( ,0) ( ,0) cos( ), 0 1u x v x x xp= = £ £ � (37)

Boundary conditions:

	 2 2(0, ) (0, ) , 0 (1, ) (1, ) , 0t tu t u t e t Tv t v t e t Tp p- -= = £ £ = = - £ £  � (38)

The exact solution is:

	 2( , ) ( , ) cos( ), 0 1, 0tu x t v x t e x x t Tp p-= = £ £ £ £ � (39)

where  is positive kinematic viscous parameter depending on Reynolds number  = 1/Re, in this test 
case  = 10–6.

In this problem, the results for u and u, presented in Table 4 and Table 5 respectively, are com-
pared with the findings in [51, 80], considering N = 4, k = 0.1, c = 1.0159 and various values of t. 
Figure 7 and Figure 8 provide both 3D and 2D visualizations of the exact and numerical solutions for 
u, showcasing the accuracy of the proposed approach.

	● Performance and convergence.
The proposed OMBM scheme consistently outperforms existing approaches in our tests. Across all 
benchmarks, it delivers lower error norms for comparable costs and admits near-optimal parame-
ter choices (node layout and shape parameter).

	● Mesh independence.
Beyond a modest node count, further refinement produces no appreciable change in the numeri-
cal solution Figure 6, indicating that the spatial discretization error is negligible relative to other 
sources. This mesh-independent behaviour confirms that our nodal distribution and shape param-
eter capture the solution effectively without unnecessary computational overhead.

	● Robustness and efficiency.
The solution remains stable under mesh refinement, attesting to the robustness of the method. 
Using the minimum number of nodes required to reach the mesh-independent regime ensures good 
accuracy at reasonable cost, avoiding superfluous refinement.

Figure 6: 2D visualization of errors vs number 
of nodes (N) of problem 2

Table 3: Error L¥ comparison for u in Problem 2 at 
t = 0.5 for k =0.1

Method N L¥

OMBM 30 2.79 × 10–11

CBSLM3 [79] 130 4.27 × 10–7

SC-SL1 [79] 130 1.04 × 10–5

SC-SL2 [79] 130 4.03 × 10–7

SC-SL3 [79] 130 3.91 × 10–7
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Figure 8: 2D visualization of exact (analytical) and numerical solution for u of problem 3 with  
k = 0.1, T = 1

Figure 7: 3D visualization of exact (analytical) and numerical solution for u of problem 3 with  
k = 0.1, T = 1

Table 4: Error comparison for u in Problem 3 with N =4, k =0.1 and  = 10–6

t
Shallal et al., [80] Kaur et al., [51] Present method (OMBM)
L¥ L2 L¥ L2 L¥ L2

0.1 1.8147 × 10–7 1.2832 × 10–5 5.0152 × 10–9 3.1295 × 10–9 4.8738 × 10–14 3.9659 × 10–14

0.3 5.4442 × 10–7 3.8497 × 10–5 1.4997 × 10–8 9.3087 × 10–9 4.8738 × 10–14 3.9659 × 10–14

0.5 9.0737 × 10–7 6.4161 × 10–7 2.9106 × 10–8 1.5920 × 10–8 4.8794 × 10–14 3.9704 × 10–14

0.7 1.2703 × 10–6 8.9825 × 10–7 5.3033 × 10–8 2.7938 × 10–8 4.8738 × 10–14 3.9659 × 10–14

Table 5: Error comparison for u in Problem 3 with N = 4, k =0.1 and  = 10–6

t
Shallal et al., [80]    Kaur et al., [51] Present method (OMBM)
L¥ L2 L¥ L2 L¥ L2

0.1 1.8147 × 10–7 1.2832 × 10–5 5.0152 × 10–9 2.5350 × 10–9 4.8738 × 10–14 3.9659 × 10–14

0.3 5.4442 × 10–7 3.8497 × 10–5 1.9921 × 10–8 1.3377 × 10–8 4.8738 × 10–14 3.9659 × 10–14

0.5 9.0737 × 10–7 6.4161 × 10–7 2.7001 × 10–8 1.6748 × 10–8 4.8794 × 10–14 3.9704 × 10–14

0.7 1.2703 × 10–6 8.9825 × 10–7 4.9534 × 10–8 2.7948 × 10–8 4.8738 × 10–14 3.9659 × 10–14
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4. Conclusion

This study introduced an Optimized Meshless Block Method (OMBM) for solving time-dependent par-
tial differential equations by combining the RBF-FD technique for spatial discretization with a two-step 
hybrid block method for time integration. While this combination is capable of addressing several chal-
lenges associated with traditional numerical methods such as handling complex geometries and reduc-
ing computational cost, the present work has focused specifically on evaluating and demonstrating 
improvements in accuracy and robustness. Numerical experiments confirmed that the proposed OMBM 
method achieves high accuracy, verified convergence, and efficient use of computational resources.

For future work, various strategies can be explored to determine the optimal value of the shape 
parameter. Additionally, different types of RBFs can be employed, such as Gaussian and inverse 
multiquadric (IMQ), to assess their impact on the performance and accuracy of the method. These 
approaches could provide deeper insights and potentially improve the robustness and versatility of 
the solution method.
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