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Abstract
Osteoporosis refers to a chronic bone disease that is characterised by bone loss, microarchitectural 
loss and high likelihood of getting fragility fracture. Proper forecasting of disease in order to intervene 
early and plan therapy is crucial. The current research will develop a hybrid modelling system that 
combines machine learning with nonlinear differential equations to predict the development of osteo-
porosis through longitudinal bone density imaging. A model of nonlinear bone remodelling is derived 
based on the coupled system of osteoclast and osteoblast functions, the parameters of the resorp-
tion and formation process are adaptively determined with the help of machine learning. External 
inputs include imaging biomarkers of DXA, QCT and HR-pQCT scans which are used to calibrate 
patient-specific remodelling behaviour. It is also extended to a neural differential equation module 
that is designed to improve the faithfulness of prediction by learning nonlinearities of higher-order 
that are not modelled by classical physiology-based equations. On of the longitudinal bone imaging 
dataset, experiments show that the hybrid model has a high prediction accuracy, which decreases 
the mean absolute BMD error by 23% relative to standalone ML models and 31 relative to classical 
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ODE models. Noise, missing modalities and variation in the follow-up interval The robustness testing 
demonstrates that there is negligible predictive power loss with robustness testing. These results 
imply the possibility of the machine-learning-enhanced nonlinear models yielding predictions on oste-
oporosis progression that could be used in practise.
Mathematics Subject Classification (2020): 46N10, 49J40
Key words and Phrases: Osteoporosis, nonlinear dynamics, bone remodeling, machine learning, neural 
differential equations, DXA, QCT

1. Introduction

Osteoporosis is a chronic metabolic bone disease that is characterised by a loss of bone mass, degra-
dation of microarchitecture, and predisposition to fragility fractures [1]. Osteoporosis has remained a 
persistent problem worldwide especially among the older population, and timely detection of the onset 
of the disease is thus of essence in the management of the disease as a preventive measure and the 
prevention of fractures [2]. Convincing diagnostic instruments like the dual energy X-ray absorptiom-
etry (DXA) have been used to study bone mineral density (BMD) in a static manner, whereas they do 
not offer any information on the dynamic remodelling mechanisms [3].

The nonlinear interactions between osteoclast-mediated resorption and osteoblast-mediated for-
mation control bone remodelling, which is regulated by the influence of biochemical, biomechanical, 
and hormonal factors [4,5]. Historically, the remodelling pathways are described by classical models 
based on nonlinear differential equations, but because of limited personalization and the inability to 
fit the parameters on clinical data, their predictive power is limited [6]. Imaging modalities like QCT 
and HR-pQCT are the places where machine learning (ML) methods have demonstrated considerable 
promise in ensuring that structural degradation patterns can be captured at an early stage to predict 
the beginnings of deterioration in the trabecular bone properties [7–9].

Recent developments in neural differential equations, deep learning regression and physics-in-
formed neural networks provide effective approaches to holistic long-term bone loss trajectory mod-
eling without losing biological understandability [10–12]. Application Combinations of machine 
learning with nonlinear ODE models have been shown to effectively bridge the gap between mech-
anistic models and human patient data, enabling to estimate parameters and be more sensitive to 
inter-patient variability [13–15].

Moreover, the development of Internet of Things (IoT) technologies, wearable health monitoring 
devices, and built-in medical sensor networks, allows them to collect physiological and biomechanical 
signals continuously to improve osteoporosis monitoring pipelines [16-20]. These technologies also 
help in the creation of superior data ecosystems that support dynamic modelling models through the 
provision of real-time or high-frequency data streams. Likewise, the development of ultra-low-latency 
communication systems and 5G infrastructure helps a great deal in transmitting and integrating 
medical imaging and sensor data into healthcare networks.

With these opportunities, the current work suggests an osteoporosis progression prediction model 
based on machine learning and nonlinear differential equation modelling through multi-modal bone 
imaging data. The framework combines (1) the use of physiologically based remodelling equations, 
(2) machine learning based estimation of the parameters, (3) neural ODE augmentation against non-
linearities not in the model, and (4) imaging-based biomarker predictors to provide clinically useful 
predictions . The goal is to integrate interpretability and predictive performance in order to assist in 
support of personalized diagnostic decision-making.

2. Related Works

Studies of osteoporosis disease prediction have cut across many areas such as statistical modelling, 
nonlinear bone biology, deep learning models, and intelligent healthcare. Conventional statistical 
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predictors that are made using the regression and survival models mainly concentrate on the decline 
in BMD and the occurrence of fractures but do not embrace the nonlinear nature of the remodelling 
process [1,7]. Random forest, gradient boosting machine learning, and convolutional neural networks 
have been illustrated to have a better performance when trained on structural biomarkers of QCT 
and HR-pQCT imaging [8–10].

Nonlinear population dynamics-mechanostat theory mechanistic models of bone cell population 
dynamics are an effort to model remodelling as a feedback-driven system of differential equations 
[4,5,11]. Although these models are biologically interpretable, they are restricted to understanding 
patient-specific remodelling pathways because of problems estimating patient-specific parameters 
based on clinical imaging. In recent advances in neural ODEs and physics-informed neural networks, 
this scenario has been made better by incorporating nonlinear physiology into the differentiable 
models of learning [12–14].

Hybrid models that integrates ML with ODE / PDE architectures have become potential solutions 
to the modelling of long-term remodelling with greater accuracy. These models permit the estimates 
of parameters like resorption and formation coefficients to be adapted to real imaging data to a great 
extent improving the predictive ability [15]. Models that are driven by imaging that use trabecular 
number, cortical thickness, and bone volume fraction also increase the sensitivity of models [13].

Simultaneously, the IoT-based health systems, wearable biomedical sensors, embedded monitoring 
systems, and wireless medical networks offer a chance to obtain continuous physiological information 
that is likely to be indirectly added to the bone modelling frameworks [16–20]. It has been noted that 
effective communication systems, low-latency data transmission, and effective embedded processing 
must be in place to enable computationally intensive medical applications, such as imaging and lon-
gitudinal monitoring .

It is based on these foundations that the proposed approach presents a holistic ML-enhanced non-
linear differential model, which is known to work on longitudinal imaging data and combines physio-
logical mechanistic modelling with data-driven adaptability.

3. Methodology

3.1 Overall Framework

The suggested predictive model combines machine learning and nonlinear differential equations mod-
elling to predict and forecast the development of osteoporosis based on longitudinal bone density 
images. The system will utilise physiological interpretability and the ability to learn using data, 
overcoming the shortcomings of classical models of bone remodelling that do not tend to generalise to 
diverse patient groups.

The framework has three central modules, as shown in Figure 1:
1. Biomarker extraction based on imaging where the quantitative characteristics of the bones are

based on DXA, QCT and HR-pQCT images.
2. Modelling of nonlinear bone remodelling differential equations, a coupled formation resorption

description of bone mass dynamics.
3. The parameter estimation with the help of machine learning, which is used to estimate the

individual-specific remodelling coefficients and the model parameters based on imaging data.

The framework starts with multi-modal images preprocessing and normalization of the BMD values 
and structural indicators extraction. These biomarkers constitute the input matrix to the differential 
equation model as well as the machine learning subsystem. The hybrid pipeline, which combines 
both interpretable nonlinear dynamics and better predictions than traditional mechanistic models, is 
made possible by the combined hybrid pipeline.

The imaging data that is included in the system is areal BMD measured using DXA, Volumetric 
BMD measured using quantitative CT scans, microarchitectural parameters that include trabecular 
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number and cortical thickness measured using HR-pQCT. These imaging modalities give comple-
mentary information of structural data, which together improves the credibility and customization of 
modeling process.

3.3.1 Analytical Properties of the Nonlinear Remodeling System

In order to prove mathematical validity of the proposed nonlinear bone remodelling model, we con-
sider existence, uniqueness and stability of the solutions to the system of equations of ODE:

( ) a a= -1 2( ) .( )m n
f r

dB t
k B t k B t

dt
(1)

Let

( ) a a= -1 2 .m n
f rf B k B k B (2)

Existence and Uniqueness:
The Picard-Lindelof conditions are met since the system f(B) is locally Lipschitz continuous, and 

B > 0. So given any initial bone mass B(0) > 0 there is a unique solution of all  t >=0.
Equilibrium Point:
The system accepts a single biologically homogenous equilibrium:
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Stability of Equilibrium: Linearizing the system around B* gives:
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Figure 1: Overall Hybrid Modeling Framework for Osteoporosis Progression Prediction
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Substituting (13) yields:

( ) ( ) a -¢ = -* * 1
2( ) .n

rf B m n k B (5)

Thus:
When n > m, then ( )¢ <* 0f B  ⇒ implies a stable equilibrium (healthy ageing path).

When m > n, then ( )¢ >* 0f B  ⇒ unstable equilibrium (runaway resorption-rapid osteoporosis progression).

These states can be used to describe biologically observed remodelling behaviour when there is a 
hormonal imbalance or structural impairment.
Boundedness:
For n > m, solutions satisfy:

( ) ( )( )< < *0 max 0 , ,B t B B (6)

guarantees physiologically significant predictions.

3.2 Imaging-Derived Feature Extraction

The correct forecast of osteoporosis development is based on the comprehensive quantification of bone 
qualities and microarchitecture. DXA, QCT, and HR-pQCT are imaging modalities that allow extract-
ing biomarkers that characterise specific bone tissue. The system identifies a complete set of features, 
summarised in Table 1, and puts them in a temporal biomarker matrix X(t) of each patient.

Based on DXA, the system calculates areal bone mineral density (BMD) g/cm 2 which still serves 
as a gold standard clinical test to detect osteoporosis. Even though DXA is two-dimensional and does 
not provide volumetric detail, it has a high reproducibility which is useful in longitudinal follow-up.

Based on QCT, volumetric BMD (vBMD) is obtained in mg HA/cm 3. Also, using QCT, the trabec-
ular and cortical compartments can be isolated, which is better sensitive to the initial signs of bone 
deterioration, particularly in the spine and hip areas.

High-resolution microstructural indicators are obtained out of HR-pQCT and these include:
● Trabecular number (Tb.N)
● Trabecular spacing (Tb.Sp)
● Trabecular thickness (Tb.Th)
● Cortical thickness (Ct.Th)
● Bone Volume Fraction (BV/TV)

Such microarchitectural characteristics are critical towards the prediction of the biomechanical 
integrity and fracture risk. The obtained biomarkers are all normalised and put into a feature vector:

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }BMD , vBMD , Tb.N , Tb.Sp , Ct.Th , BV/TV ,...X t t t t t t t= (7)

that is the input to the model parameter estimation and neural different equations augmentation.
The derivation of a variety of structural indicators allows the model to connect the macro level 

density variation and the microstructural loss in place of the deterioration, forming a strong basis to 
model the long-term osteoporosis development.

3.3 Nonlinear Differential Equation Bone Remodeling Model

A nonlinear differential equation model that defines the dynamics of bone remodelling is used to 
describe the physiological basis of osteoporosis progression. The bone mass B(t) develops as a result 
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of conflicting processes of bone resorption and bone formation by osteoclasts and osteoblasts respec-
tively. This connexion can be stated as follows:

( ) ( ) ( )= -f r

dB t
k F t k R t

dt

In it, fk  and rk   are nonlinear coupling coefficients which define how bone mass varies with the processes of 
formation and resorption. The two functions F(t) and R(t) characterize the bone formation and bone resorption rates 
respectively and obey nonlinear power-law kinetics:

( ) ( )a a= =1 2( ) , ( )m nF t B t R t B t

The nonlinear remodelling responses that are captured by exponents m and n include osteoblast 
amplification in response to moderate bone mass or increased resorption in old age or with a decrease 
in hormone levels.

Estimation based on machine learning helps to refine the parameters a a1 2, , ,f rk k  to include patient-specific 
remodelling profiles. The predictive ability of classical nonlinear models cannot be estimated on a personalized basis.

Long-term prediction of physiological-meaningful progression in nonlinear and non-ideally con-
trolled physiological systems is based on the nonlinear differential equation model. Nevertheless, in 
reality, the biological dynamics can involve more complex nonlinearities and interactions that are not 
modelled, which can justify the introduction of machine learning improvements as outlined below.

3.4 Machine Learning-Based Parameter Estimation

The classical methods of estimating the parameters of bone remodelling are based on small samples 
and extremely susceptible to noise. As a solution to this, a machine learning model is trained to pre-
dict the parameter vector:

q a aé ù= ë û1 2, , ,f rk k

with the biomarkers of imaging and past bone mass measures, calculated as:

( ) ( )( )q = ML ,f X t B t

The machine learning system (a multilayer neural network) is trained on nonlinear relations 
between physiological remodelling dynamics and imaging biomarkers. The outcome of the training is 
reduced:

( ) l q= + � � 2
pred true 2RMSE ,B B

In which the regularization term l q� �22   discourages physiologically implausible parameter values.

Table 1: Imaging-Derived Biomarker Feature Set

Feature Description
BMD Areal bone mineral density from 

DXA
vBMD Volumetric bone mineral density 

from QCT
Tb.N Trabecular number (HR-pQCT)
Tb.Sp Trabecular spacing (HR-pQCT)
Ct.Th Cortical thickness (HR-pQCT)
BV/TV Bone volume fraction Figure 2: Nonlinear Differential Equation Model 

of Bone Remodeling
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The hyperparameters that include the learning rate, hidden dimensions, and regularization weights 
are optimized through the Bayesian optimization method which guarantees that the parameter con-
figurations globally optimum are achieved. ML-assisted estimation is strongly beneficial in terms of 
flexibility to patient-specific bone quality and severity of the disease.

3.5 Neural Differential Equation Augmentation

Although nonlinear equations of remodelling are expressive, other complex biological processes, such 
as hormonal regulation, mechanical loading, microdamage accumulation, and metabolic factors are 
hard to model explicitly. In order to incorporate these absent dynamics, the model proposes a neural 
differentiation equation element:

( ) ( ) ( ) ( ) ( )( )f= - + ,f r

dB t
k F t k R t g B t X t

dt

in which gϕ is a parameter of a neural network given by ϕ. This part acquires nonlinearities and 
unseen interactions that are not modeled by the classical physiological equations.

The neural ODE module works in continuous time so that it can integrate with the remodelling 
ODE, but it is temporally consistent. It improves the predictive power particularly when there are 
marked differences of the remodelling patterns of the bone, e.g., acute bone loss as a result of cortico-
steroids or metabolic diseases.

When combined, the machine learning-informed nonlinear differential equation model presents a 
consistent and precise predictor of the osteoporosis progression in the diverse populations of patients.

3.5.1 Well-posedness of the Neural ODE-Augmented Remodeling Dynamics

It satisfies the neural augmentation term:

f + ´ ®  : ,dg

modelling unmodeled nonlinear remodelling effects learnt on data.

Lipschitz Continuity:
We make the following standard assumption of neural ODEs:

( ) ( )f f- £ -� � � �1 2 1 2, , ,g B X g B X L B B

this is provided through weight clipping or spectral normalization in the neural network.
In this state, the hybrid field of vectors is the case.

( ) ( )fa a= - +1 2 ,m n
h f rF B k B k B g B X

is Lipschitz on compact domains worldwide, which ensures solutions by the Picard theorem which is 
existence and uniqueness.

Figure 3: Neural ODE Augmentation for Osteoporosis Prediction



� 19

Stability Analysis:
Stability near the equilibrium B*:

( ) ( ) f¶
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the balance is still maintained. This is so that neural ODE does not falsify physiological behaviour.

Boundedness:
Since gϕ is learned with regularization, which satisfies:

( ) ( ), 1 ,g B X C Bf £ +

the hybrid system has linear growth, which ensures long-term boundedness and eliminates blow-up 
on finite time.

3.6 Implementation and Dataset

● Dataset: 5-year longitudinal DXA/QCT/HR-pQCT imaging study
● Training: 70%, Validation: 15%, Testing: 15%
● Optimization: Adam, learning rate 1e-4

4. Results and Discussion

This part will provide an extensive assessment of the suggested machine learning-based nonlinear 
differential equation model of osteoporosis progression prediction. The findings are grouped into three 
large parts, namely, predictive performance, structural biomarker prediction, and robustness analy-
sis. The subsections include a lot of quantitative and qualitative information with figures and tables.

4.1 Predictive Performance

The accuracy of prediction was determined by applying the hybrid model to a 5-year longitudinal 
imaging dataset. The calculated bone mineral density (BMD) values were then checked with ground-
truth bone mineral density obtained through DXA and QCT scans. The hybrid ML-nonlinear model 
presented in Figure 4 had a higher predictive accuracy compared to the individual machine learning 
models and classical models based on the use of differential equations, as shown in Figure 4.

This is due to the performance improvements because the neural differential equation is able 
to capture nonlinear remodelling patterns that cannot be represented in conventional models. The 

Table 1: Imaging-Derived Feature Set

Feature Description
BMD Areal bone mineral density
vBMD Volumetric BMD
Tb.N Trabecular number
Tb.Sp Trabecular spacing
Ct.Th Cortical thickness
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parameters under the estimation of the machine learning process also contribute to increased person-
alization with the dynamics of remodelling being adjusted to the imaging biomarkers and baseline 
BMD of each patient.

The hybrid model exhibited:
● 23% RMSE decrease over machine learning models.
● It means that the ML models cannot encode the remodelling process completely even when long

time horizons are considered during which errors accumulate.
● A reduction in RMSE (31) of classical ODE models.
● Classical models are not adaptive hence they cannot perform well when they have to confront

heterogeneous remodelling behaviour or structural abnormalities that can be seen in imaging
data.

● Correlation coefficient R^2=0.91

Such a high correlation indicates high agreement in predicted and measured BMD values in the 5 
years period.

Additionally, the hybrid model was found to be more stable and the prediction variance was smaller 
between subjects. The classical models had greater deviation in older patients with severe deteriora-
tion of the trabecula, and hybrid model had a stable performance. These results confirm the potential 
of integrated ML-ODE framework to provide the very precise and personalized predictions of BMD 
decline.

4.2 Structural Prediction Metrics

Although BMD is the main predictor of osteoporosis, microarchitectural degradation is a determinant 
of the risk of fracture. As such, forecasting of the structural biomarkers including trabecular number 
(Tb.N) and trabecular spacing (Tb.Sp) by the model was evaluated. HR-pQCT scans with these mea-
surements were compared with ideal values obtained in the remodelling-neural ODE model.

The model was capable of longitudinal predictive of microarchitectural changes as indicated in 
Figure 5 against the complexity of the nature of the pattern of trabecular degradation. The metrics 
used to predict indicate:

● Tb.N error: 3.8%

This small error demonstrates that the thickness of the trabecular and loss of bone connectivity are 
correctly modelled which are the typical signs of osteoporosis development.

Figure 4: BMD Prediction Accuracy Over 5-Year Interval
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● Tb.Sp error: 4.1%

The correct estimation of trabecular spacing implies that the model can be effective in describing 
structural degeneration that is caused by the growth of marrow-filled cavities over time.

These findings show the potential of the model in predicting both global reduction in density and 
microstructural degradation which is a critical feature of a high fidelity model of osteoporosis devel-
opment. Notably, the accuracy of structural prediction also did not decrease when imaging modalities 
were absent or damaged, which highlights the usefulness of combining deep learning and mechanistic 
modelling.

4.3 Robustness Analysis

Clinical deployment is paramount to robustness, which could be distorted by noise in practice, and 
certain modalities might be unavailable because of their cost, or accessibility, or acquisition failures. 
Systematic assessment was carried out under three major perturbation conditions namely (i) sensor 
noise, (ii) missing DXA modality, and (iii) missing HR-pQCT modality. Table 2 contains the summary 
of the results that captured the rise in RMSE, as well as the decline in structural similarity (DSC).

The model was very robust to these discontinuities of the real world. RMSE rose only to a small 
extent ( +4.2%), whereas DSC dropped to –1.1% when 20 percent imaging noise was introduced. This 
proves that the smoothing nature of the nonlinear model as well as automatic parameter regulariza-
tion by machine learning overcomes the impact of noisy inputs.

Without DXA data, there was an increase in RMSE by +6.8 that was primarily caused by a decrease 
in accuracy in estimating baseline BMD. However, the model retained structural recognition functions 
at a relatively low cost of DSC. Greater degradation was seen as a result of the removal of HR-pQCT 
( +8.3% RMSE) as is indicative of the relevance of microarchitectural contributions to structural dete-
rioration dynamics. Nevertheless, the performance was still strong, which made clinical use.

It is also indicated by qualitative visualisations that the hybrid model is able to effectively offset 
the features missed through the operation of the learned remodelling dynamics and the neural ODE 
corrections. These results note that the model has high generalizability in a wide range of imaging 
settings, which broadens its applicability in resource-abundant and resource-limited clinical settings.

Figure 5: Prediction Error of Structural Biomarkers (Tb.N, Tb.Sp)

Table 2: Robustness Under Noise and Missing Modality

Scenario RMSE Increase DSC Drop
20% noise added +4.2% –1.1%
Missing DXA +6.8% –1.4%
Missing HR-pQCT +8.3% –1.8%
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5. Conclusion

The article presents a nonlinear differential equation that is improved by machine learning to forecast 
the progression of osteoporosis based on bone density measures. The proposed framework can be used 
to predict better and maintain interpretability by combining physiologically-founded bone remodelling 
equations with neural parameter estimation and augmenting neural ODEs. Longitudinal imaging 
dataset experiments show a higher capability of predicting BMD loss and trabecular degeneration over 
both conventional ODE models and completely data-driven machine learning methods. The robustness 
testing also proves that the hybrid model is also stable to noises in imaging scenarios and missing 
modalities, which can prove its clinical viability. The application of biomechanical loading data, hor-
monal biomarkers, and probabilistic uncertainty model in the future will help in improving the reli-
ability of predictions and improving applicability to fracture risk prediction. This paradigm of hybrid 
model has a high probability of being adopted in an individualized osteoporosis management system.
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