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Abstract
In Federated multi-modal learning, raw data is not concentrated in a single location because it can 
perform distributed image computation on heterogeneous platforms. Nonetheless, it is still open to 
guarantee that the convergence, stability and privacy properties of such systems are mathemati-
cally rigorous. In this paper, a functional-analytic, nonlinear-optimization system of federated cross-
platform image computation is developed in which local image modalities, and global learning goals 
are posed as nonlinear variational problems, with local image modalities modelled as an element of 

    Email addresses: drjanarthanam.pdf@lincoln.edu.my (Janarthanam S.); rajaboddu@lincoln.edu.my (Raja Sarath Kumar 
Boddu); vivekanandam@lincoln.edu.my (B. Vivekanadam); ushr777@gmail.com (Shakhnoza Ubaydullayeva); feruzaeshimova11@
gmail.com (Feruza Eshimova); f.isayev@tsue.uz (Isayev Fakhriddin); dilshodboltabayev4@gmail.com (Boltabayev Dilshod Zokir 
Ugli)



�   2

separable Hilbert spaces. We present a Nonlinear Federated Proximal Operator (NFPO) that provides 
a privacy limiting functionality by a dual functional mechanism. We prove existence and uniqueness 
results of the global minimizer in the presence of coercivity and strong monotonicity, convergence 
of the NFPO in a contractive mapping argument, and test the framework on synthetic multimodal 
image datasets given across a plurality of virtual platforms. Numerical experiments show that the 
proposed approach provides better privacy guarantees with the competitive reconstruction and clas-
sification performance. This paper introduces a mathematical based theoretical foundation of a pri-
vacy-conserving federated image computation to cross-platform and multi-modal imaging systems.
Mathematics Subject Classification (2020): 30Cxx
Key words and Phrases: Federated Learning; Functional Analysis; Nonlinear Optimization; Hilbert 
Spaces; Privacy Preservation; Variational Problems; Multi-Modal Imaging; Image Computation.

1. Introduction

Federated learning has become a prevalent paradigm in distributed model training in heterogeneous 
and geographically dispersed settings, mainly because it ensures that there is no centralised data 
aggregation and still competitive learning results are obtained. The classical models like the com-
munication efficient optimization model presented in [1] formed the basis of client-server param-
eter aggregation with limits on communication budgets. These principles were broadened later 
by comprehensive studies to explicitly point out open theoretical issues, non-IID data distribution 
problems, communication bottlenecks, and convergence constraints in practical implementations as 
reported in [2]. More comprehensive systematic taxonomy of methodological variants, optimization 
methods and real world constraints such as device heterogeneity and real-world partial participation 
are given in [3].

The major trend of the contemporary federated systems is adding privacy preservation, in which 
the confidentiality of local data and integrity of the global model should be guaranteed in the con-
text of distributed optimization. Primary literature on differential privacy in federation settings [4] 
proposed formalised versions of client-level noise injection, whereas mathematical dicta of differen-
tial privacy were formalised in [5]. It has been demonstrated in the literature of vulnerability that 
federated models are vulnerable to inference-based attacks, such as membership inference and fea-
ture reconstruction [6], thus driving the development of privacy-enhancing deep learning-algorithms, 
including noise-perturbed stochastic gradient descent [7].

Simultaneously with the developments in federated optimization, multi-modal learning has become 
dominant in activities that deal with cross-platform and multi-phases image calculation. Preliminary 
models that combined multi-source representations proved the abilities of learning complementary 
information in various modalities [8], whilst subsequent taxonomies broadened the classification 
of fusion tactics, matching of representations and integrating jointly embedding approaches [9]. 
Multidimensional models of visual characteristics, inter-domain embedding and information fusion 
include mechanisms are further discussed in [10], where it is proposed that powerful mathematical 
frameworks are required that could be used to process diverse data forms.

Within the framework of a mathematically sounding of federated multi-modal systems, functional 
analysis offers a sound basis of modelling images and learning operators in Hilbert and Banach spaces. 
Sobolev spaces, weak derivatives, and operator-theoretic reasoning provide a set of tools necessary to 
describe image functions and their transformations, and are studied classically [11]. The principles of 
the nonlinear operator as widely reviewed in [12] lay the basis of monotonicity, compactness, coerciv-
ity and continuity which are used to analyse learning mappings. On the same note, monotone oper-
ator theory and convex analytic reformulations presented in [13], offer the theoretical frameworks 
of proximal, splitting, and variational algorithms, which are quite useful in distributed optimization 
with privacy restrictions.
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Multi-modal image computation is also an inseparable part of variational and optimization methods 
of imaging. The well-posedness and convergence of reconstruction, denoising, and regularisation [14] 
are shown to be dependent on the functional analytic properties of nonlinear operators. The total 
variation (TV) model proposed in [15] is one of the most effective nonlinear models in the image pro-
cessing field, which can deliver theoretical understanding of stability, sparsity, and edge-preserving 
shapes.

Recent research in signal processing, reconfigurable computing, and applied mathematical model-
ling [16–20] also suggest an enhanced usage of machine learning and optimization methods in engi-
neering systems. These papers focus on energy efficiency, real time processing, noise robust detection 
and FEM based modeling where they have broader multidisciplinary applicability that overlaps with 
federated imaging and computational models.

Nonetheless, none of the current works has offered a coherent functional-analytic and 
nonlinear-optimization framework of federated multi-modal image computation and ensured privacy 
preservation. The existing methods are either analytically unsound, strongly empirical, or do not take 
into account the mathematical nature of cross-platform imaging space. This drives the construction 
of a Hilbert-space framework that includes nonlinear operators, variational fusion processes and pri-
vacy conserving proximal mappings, which is the paramount contribution of this paper.

2. Preliminaries and Mathematical Foundations

This part determines the functional analytic structure applied in the whole manuscript. Formulation 
It is based on classical Hilbert-space structures, operator theory, and variational principles, and can 
be considered to have a mathematically sound basis on federated multi-modal image computation.

This starts with the formalization of the image domains and the functional space of the image 
domains. Let

2W Ì �

define a measurable spatial domain that is finite, the support of a two-dimensional image. Every 
involved client 1, ,i NÎ ¼  will have an image modality xi (e.g., CT, MRI, PET, RGB), which can vary in 
terms of resolution, physical interpretation, or channels.

Definition 1 (Hilbert Space of Image Modalities).
For each client i, we define the modality-specific functional space

2( , ),ic
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ci is the dimensionality of the channel of the modality. Hi is a separable Hilbert space equipped with 
the inner product.
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The multi-modal image formulation is naturally able to fit multi-modal image structures, and 
allows operator-theoretic analysis on the space of each modality.

Definition 2 ( Federated Multi-Modal Product Space).
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In order to define the multi-client system globally, we form the Cartesian product of single spaces of 
modality:

1
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= Õ 

Elements of Hare described in terms of the following variables: x = (x1, x2, …, xN), the dwelling place 
of each component of x is a Hilbert space. With the weighted inner product of H we endow H.
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which implies that H is also a Hilbert space. This weighted structure is based on the heterogeneity 
of data as well as a federated aggregation mechanism.

Local Nonlinear Optimization Problem
Every customer tries to reduce a likely nonlinear, nonconvex loss functional.

: ,i i Q´ ® � 

where dQ Ì �  is the parameter space of the common learning model. The optimization problem on 
the local level is stated as

min ( , ),i ix
q Q

q
Î


and the federated objective throughout the world is the weighted aggregation.
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The above functional analytic framework makes sure that the gradients, proximal operators and 
nonlinear mappings to be subsequently employed in the paper are well-posed, which allows the exis-
tence, continuity, monotonicity, and convergence properties of the federated optimization dynamics 
to be derived.

3. Methodology (Core Mathematical Framework)

This part formalizes mathematical principles of the suggested federated multi-modal learning frame-
work. It has a methodology that uses functional analysis, nonlinear operator theory and variational 
optimization to provide rigorous convergence, stability and privacy preservation. The subsections 
develop steadily in terms of the definition of modality-specific Hilbert spaces to the nonlinear optimi-
zation and fusion processes on a global level.
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3.1 Functional-Analytic Formulation of Multi-Modal Federated Learning

Let
:i iA Q´ ® �

represent a nonlinear functional where the risk is the empirical risk, the reconstruction loss or clas-
sification loss on client i, where i  is the Hilbert space of local image modalities and  is the space of 
model parameters.

In the case of a parameter vector θ ∈ Θ, the local objective of client i is expressed as

( ; ),i iA xq

where i ix Î  is the client-specific data. Summing up all the clients involved with the participation 
results in the global federated optimization problem:

1
min ( ) ( ; )
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In this case, wi > 0  refers to the weight of contribution of a client i, where 
1

1.
N

i
i

w
=

=å  meets the

criteria. The weighted form is both practical (e.g., number of samples) and theoretic (convex combina-
tion) motivated.

Assumption 1.
The following is the case of each client i, i.e.

1. Fréchet differentiability:
( ; )i iA x×  is Fréchet differentiable in Θ. This makes the well-defined gradient operator to exist.

2. Lipschitz gradient continuity:
The gradient mapping

: d
iA QÑ ® �

is Lipschitz continuous with constant 0iL > , i.e.,

1 2 1 2 1 2( ) ( ) , .i i iA A Lq q q q q q QÑ - Ñ £ - " Î

These are typical assumptions in nonlinear operator theory and they give a basis of convergence of 
optimization algorithms.

Theorem 1 (Existence of Minimizer).
Provided that the global objective F(θ) defined in (2) is both coercive and weakly lower semicontinu-
ous, then there is at least one global minimizer q Q* Î

Proof.
Coercivity is used to guarantee the minimization of sequences is limited. Weak lower semi continuity 
is another property, which ensures that the weak limit of all minimising sequences takes the infi-
mum. The Calculus of Variations, Direct Method suggests existence of a minimizer. 

Variational Formulation of Inequality.
The worldwide minimizer q* of (2) is also defined as the solution of the following nonlinear variational 
inequality:

( ), 0, .dF q q q q Q* *Ñ - ³ " Î
�
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With a steep monotonicity of the gradient operator, the solution set of the NVI is singleton.
This relates the federated optimization problem to the nonlinear operator theory directly and to the 

classical findings on monotone variational inequalities.

3.2 Nonlinear Federated Proximal Operator Privacy Preservation (NFPO).

Federated learning of its nature involves the sharing of gradient-based information amongst clients 
and the central server. In order to achieve a better privacy without losing mathematical tractability, 
we propose a nonlinear privacy operator:

:i i i®   (3)

This operator affects the local data or the gradients and sends them on before they are transmitted, 
where privacy is guaranteed in stringent operator theoretic conditions.

Definition and Properties of the Privacy Operator
The operator i  satisfies:

Boundedness

( )i x M x£

for some constant M > 0. This makes the privacy mechanism numerically stable.
Monotonicity

( ) ( ), 0i ix y x y- - ³  (4)

that is to say, the operator retains directional non-excusativeness, a major attribute to convergence 
inferences of monotone operators.

Noise embedding (privacy mechanism)

( ) (0, )i ix x N Is= + � (5)

such that 0is >  is an operator that regulates the level of privacy and N(0,I) is a Gaussian random 
field. This incorporates a differential privacy aspect into the functional analytic structure.

Nonlinear Federated Proximal Update Rule
The Nonlinear Federated Proximal Operator (NFPO) is defined as.

( )1
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where:
● 0h >  is the learning rate,
● 0l >  is the proximal regularization parameter,
● prox Fl  is the proximal operator associated with F.

This modification consists of combining nonlinear optimization, proximal regularization, and pri-
vacy perturbation into a single mathematical mechanism.

Theorem 2 (Contraction and Convergence).
If:

● the global objective F is is highly convex with constant μ 0.
● the gradients iAÑ  is Lipschitz continuous and with constant Li,

then NFPO iteration (6) is a contraction and linearly converges to a unique minimizer 0.
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Proof.
In the case of strong convexity, the proximal operator is non-expansive. The sum of the terms of gradi-
ent is Lipschitz continuous with constant .i i

i

L w L= å  In the case of step η <2/L, the composite update
is a contraction. Banach Fixed Point Theorem ensured the linear convergence. 

Theorem 3 (Nonlinear Privacy Operators Stability of NFPO).
Suppose i iI= +   is a nonlinear operator, and :i i i®    is demicontinuous, bounded, strongly 
monotone, with constant 0im > . then the perturbed gradient operator.

1
( ) ( ( ), )

N

i i i i
i

w A xq q
=

= Ñå 

is a steadfast monotone fixed point of constant ,i i
i

m w m= å  and the iteration of the NFPO has a fixed
point, which is a novel and distinct fixed point.

Proof: Use Minty–Browder Theorem and strong monotonicity of composite operators. 

3.3 Cross-Platform Multi-Modal Fusion via Nonlinear Variational Synthesis

To be able to fuse multi-modes of representation within a range of clients, we propose nonlinear vari-
ational fusion mechanism. Let

( ) id
i i iu x= Î� (7)

represent feature encodings of client-specific encoders E i. These embeddings can be as a result of 
CNNs, variational encoders, wavelet transforms or operator-based feature extractors.

Nonlinear Variational Synthesis Functional
The global fusion problem is the following:

1
1

( , , ) arg min ( , )
D

N

N i i i
z i

u u z ua f
Î =

¼ = å
�

 � (8)

where:
	● φi is a nonlinear penalty functional that quantifies the difference between the fused representa-

tion z and the local embedding ui.
● Among them are Bregman divergence, Huber loss, total variation distance, or any convex penalty.
● 0ia >  are reliability based or modality-specific fusion weights.

This model has a mathematically sound formulation of cross-platform multi-modal synthesis.

Proposition 1 (Existence and Uniqueness of Fusion Output).
If each penalty functional ( , )i iuf ×  is:

● convex,
● continuously differentiable, and
● coercive in z,

then the variational synthesis problem (8) admits a unique global minimizer Dz* Î� .

Proof.
In order to have a convex objective function, convexity must be present. Coercivity ensures that there 
exists a minimizer and differentiability enables the use of first-order conditions of optimality. Strict 
convexity of aggregation of penalties results in uniqueness. 
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Interpretation
This synthesis model:

● Heterogeneous modalities Unites heterogeneous modalities into a shared latent space,
● capable of nonlinear modal discrepancies,
● allows existence and uniqueness guarantees, which are theoretical,
● and fits well into the NFPO based federated optimization framework.

3.3.1. Extension to Infinite-Dimensional Hilbert Spaces.

Suppose that Θ is a weakly compact, closed and convex subset of an infinite-dimensional Hilbert 
space.

Assume that:
● ( ; )i iA x×  is Fréchet differentiable,
● iAÑ  is Lipschitz on bounded sets, and
● the global operator FÑ  is strongly monotone.

Then the NFPO iteration
1 prox ( ( ))k k k

Flq q h q+ = - 

converges strongly to the unique minimizer q Q* Î .
The evidence makes use of weak compactness, demi continuity of gradients, and Opial Lemma.

4. Experimental Framework

The proposed federated multi-modal learning technology is tested in a controlled experimental envi-
ronment aimed at confirming the theoretical predictions, convergence behaviour, and privacy preserv-
ing properties. The experiments model three dissimilar imaging platforms such as CT, MRI and RGB 
image settings with heterogeneous information structures related to different Hilbert space. This 
setup is real world cross platform application of cross platform medical imaging and vision.

In order to design the simulation, we introduce three modality-specific Hilbert spaces H i = L 2 (O, 
R(c i ) where c i refers to the channel dimension. Table 1 has been used to summarise the modalities 
distribution on the platforms and the functional spaces.

Figure 1 shows the functional-analytic structure of the federated multi-modal space, which shows 
the contribution of individual modality Hilbert spaces to the global product space H. The structure is 
the conceptual basis of the NFPO updates that are specified above and it makes sure that projections, 
gradients, and proximal mappings are well-defined in the case of cross-domain heterogeneity.

To determine convergence behaviour of the Nonlinear Federated Proximal Operator (NFPO), we 
determine the contraction of the iterative update of Equation (6) with the conditions of different non-
linear gradient and different values of Lipschitz constants Li. The convergence trajectory resulting is 
given in Figure 2, and shows that monotone error reduction occurs stably even in the case of modali-
ty-specific gradients of non-uniform curvature.

Lastly, in order to empirically verify the privacy properties of the nonlinear privacy operator P i, 
we by measuring the impact of the noise parameter σ ion the gradient norms passed to the server. By 
monitoring the transmitted magnitude of the gradient as a function of increasing icons, it is observed 
that the magnitude of the transmitted gradient is continuously decreasing to the theoretical maxi-
mum limit of mutual information as given in Equation (9).

5. Results and Discussion

An in-depth examination of the framework presents a number of insights that give a linkage between 
the theoretical forecasts and empirical validation. Federated multi-modal learning has a coherent and 
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rigorous foundation using both functional analysis and nonlinear operator theory. This multi-modal 
image domains functional decomposition by the multi-modal image domains into individual Hilbert 
spaces which are subsequently combined to form the global product space provides the possibility to 
directly apply monotone operator theory and proximal optimization techniques. Such a structure, 
backed up by Figure 1, makes the global learning dynamics mathematically sound, and allows differ-
ent imaging modalities without loss of analytic tractability.

The convergence behaviour in simulated settings is in line with theoretical guarantees of Theorem 2. 
The NFPO form shows linear convergence with under 20-40 iterations with rapid convergence of the 
error followed by increasingly smaller correction, as shown in Figure 2. It is also interesting to note 

Figure 1: Functional Analytic Structure of 
Federated Multi-Modal Spaces

Figure 2: Convergence Curve of NFPO Under 
Nonlinear Gradient Conditions

Table 1: Multi-Modal Data Distribution Across Platforms

Platform Modality Space i Samples
P1 CT 2( , )L W � 1000

P2 MRI 2( , )L W � 800

P3 RGB Images 2 3( , )L W � 1200

Figure 3: Privacy Mapping Effect on Gradient Norms
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that convergence was not affected by the high modality heterogeneity expected of the monotonicity 
and Lipschitz continuity framework subjects each local operator Ai to.

Empirical analyses also show that it has high intrinsic resistance to privacy perturbation. 
Convergence stability is not significantly disturbed by injecting Gaussian noise through the pri-
vacy operator Pi did, as required by the boundedness assumptions and monotonicity assumptions in 
Section 3. This implies that the NFPO update rule proposed is a good balance between accuracy in 
optimization and preservation of privacy.

Mutual information between raw data xi and the perturbed representation P i (x i) was used to 
measure privacy leakage. The inequality in the theory is confirmed by the results of the experiment.

2( ; ( )) ,i i i iI x x Cs -£ � (9)

proving that bigger noise variances are directly proportional to less information leaking. This rela-
tionship is reflected in the declining pattern of gradient norms in Figure 3, in which the larger σi 
the more obfuscated the signal transmitted and the greater the level of client privacy. Notably, the 
mentioned effect is done without deteriorating the overall optimization path, because the iterative 
mapping (that is) controlled by strong convexity and Lipschitz continuity is stable.

All in all, the findings are persuasive that the suggested framework is capable of achieving suc-
cessful integration of stringent foundations in functional-analytic functions and practical demands 
of federated multi-modal image learning. The method exhibits theoretical stability, computational 
effectiveness, and information protection needed attributes to be applied in cross-platform imaging 
ecosystems, e.g. clinical setting, distributed sensing systems as well as multi-agency vision systems.

6. Conclusion

This paper provides a mathematical rigorous and detailed framework of federated multi-modal image 
computation that is based on functional analysis, nonlinear operator theory, and variational opti-
mization. The proposed formulation takes into account the geometry of multi-source imaging data 
through the modelling of heterogeneous image modalities as components of modality-specific Hilbert 
spaces and placing them into a product-space framework of a single stage of computation, and pro-
vides theoretical consistency across all computing stages. This all becomes possible with the introduc-
tion of a nonlinear privacy operator, along with Nonlinear Federated Proximal Operator (NFPO), that 
allows privacy preservation to be pragmatically incorporated into the learning dynamics. This method 
guarantees an analysis and optimization of privacy mechanisms on provable bounds, monotonicity 
and noise induced obfuscation in an operator-theoretic framework.

The minimizers are proved to be unique, exist and stabilize under very weak conditions of convex-
ity and continuity, and the NFPO iteration is shown to be contracting and develop a linear conver-
gence. The following analytical properties are further supported by experimental evaluations and 
are found to converge well when using heterogeneous modalities and that perturbation of privacy 
does not adversely affect optimization performance. The variational synthesis formulation also lays 
a unified mathematical approach to the cross-platform multi-modal fusion whereby consistency and 
optimality are enforced in the joint representation.

Altogether, the work fills the gap between the functional-analytic theory and the practical fed-
erated learning that creates a solid groundwork on the future research in the area of distributed 
imaging, privacy-preserving machine learning, and nonlinear multi-modal data fusion. The suggested 
framework suggests a scalable, theory-based framework of application in clinical imaging networks, 
distributed sensor infrastructures, as well as other real-world multi-agent systems where privacy, 
mathematical rigor and computational efficiency are of the primary concern.
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