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Abstract

In the paper, with aid of generating functions, the authors present several recurrence relations and identities
for generalized derangement numbers involving generalized harmonic numbers and the Stirling numbers of
the �rst kind.
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1. Introduction

In combinatorial mathematics, a derangement is a permutation of the elements of a set, such that
no element appears in its original position. The number of derangements of a set of size n is called the
derangement number. Derangement numbers can be generated by

e−t

1− t
=

∞∑
n=0

dn
tn

n!

and possess the closed-form expression

dn =
n∑

k=0

(−1)k
n!

k!
.
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See the monograph [3] and the papers [18, 20, 21, 23, 24, 25, 26].
The generalized derangement numbers dn,r are introduced by Munarini [15] as

dn,r =

n∑
k=0

(−1)k
(
r + n− k

n− k

)
n!

k!

and can be generated by

e−t

(1− t)r+1
=

∞∑
n=0

dn,r
tn

n!
. (1)

It is clear that dn,0 = dn. The �rst few generalized derangement numbers dn,r are

d0,r = 1, d1,r = r, d2,r = r2 + r + 1, d3,r = r3 + 3r2 + 5r + 2.

Several types of extensions of derangement numbers have been o�ered and many of remarkable properties
and identities have been achieved for them. See, for example, the papers [12, 13, 14, 30, 31, 32].

Harmonic numbers [9] are located in a very important position in combinatorial number theory. Various
generalizations for these numbers have been introduced in the literature. One of them, due to [5], is denoted
by H(n, r, α) and de�ned by

∞∑
n=0

H(n, r, α)tn =

[
− ln

(
1− t

α

)]r+1

1− t
. (2)

Employing generating functions, the authors of [5] established a number of combinatorial identities and
relations for generalized harmonic numbers H(n, r, α) and some important special polynomials and numbers.
Setting r = 0 in (2) leads to another type of generalized harmonic numbers, which are given by

H0(α) = 0 and Hn(α) =
n∑

i=1

1

iαi

for n ∈ N = {1, 2, . . . } and can be generated by

∞∑
n=1

Hn(α)t
n =

− ln
(
1− t

α

)
1− t

.

Note that Hn(1) = Hn denotes the classical harmonic numbers [6, 16]. Furthermore, a generalization for
hyperharmonic numbers was presented in [17] as

Hn,r(α) =
n∑

i=1

Hi,r−1(α), r, n ≥ 1

subject to initial condition Hn,0(α) =
1

nαn , and can be generated by

∞∑
n=0

Hn,r(α)t
n =

− ln
(
1− t

α

)
(1− t)r

. (3)

For further investigations concerning with generalized harmonic numbers, the readers may consult with [1,
2, 4, 7, 10, 11, 27, 28] and references cited therein.

As another important number in combinatorial analysis, the Stirling numbers of the �rst kind can be
generated by

[ln(1 + x)]k

k!
=

∞∑
n=k

s(n, k)
xn

n!
, |x| < 1 (4)
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and satisfy the (diagonal) recurrence relations

s(n+ 1, k) = s(n, k − 1)− ns(n, k),

s(n, k) = (−1)k
n∑

m=1

(−1)m
k−1∑

ℓ=k−m

(−1)ℓ
(
n

ℓ

)(
ℓ

k −m

)
s(n− ℓ, k − ℓ)

= (−1)n−k
k−1∑
ℓ=0

(−1)ℓ
(
n

ℓ

)(
ℓ− 1

k − n− 1

)
s(n− ℓ, k − ℓ),

and

s(n+ k, k)(
n+k
k

) =

n∑
ℓ=0

(−1)ℓ
⟨k⟩ℓ
ℓ!

ℓ∑
m=0

(−1)m
(
ℓ

m

)
s(n+m,m)(

n+m
m

) , (5)

where the conventions that
(
0
0

)
= 1,

(−1
−1

)
= 1, and

(
p
q

)
= 0 for p ≥ 0 > q are adopted and

⟨x⟩n =
n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n+ 1), n ≥ 1

1, n = 0

is the falling factorial. See the book [8] and the papers [19, 22].
The classical Euler's gamma function Γ(z) can be de�ned [29, Chapter 3] by

Γ(z) = lim
n→+∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }.

The extended binomial coe�cient
(
z
w

)
for z, w ∈ C is de�ned by

(
z

w

)
=



Γ(z + 1)

Γ(w + 1)Γ(z − w + 1)
, z ̸∈ N−, w, z − w ̸∈ N−;

0, z ̸∈ N−, w ∈ N− or z − w ∈ N−;

⟨z⟩w
w!

, z ∈ N−, w ∈ N0;

⟨z⟩z−w

(z − w)!
, z, w ∈ N−, z − w ∈ N0;

0, z, w ∈ N−, z − w ∈ N−;

±∞, z ∈ N−, w ̸∈ Z;

where

R = (−∞,∞), C =
{
x+ i y : x, y ∈ R, i =

√
−1
}
, Z = {0,±1,±2, . . . },

N = {1, 2, . . . }, N0 = {0, 1, 2, . . . }, N− = {−1,−2, . . . }.

In this paper, with help of generating functions, we will present several recurrence relations and identities
for generalized derangement numbers dn,r involving generalized harmonic numbers H(k, r, α) and the Stirling
numbers of the �rst kind s(n, k).

2. Main results and their proofs

This section is devoted to demonstrate our main results and their proofs.

Theorem 1. The generalized derangement numbers dn,r satisfy

n∑
k=0

(
n

k

)
dk,r = n!

(
n+ r

n

)
, n ∈ N0.
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Proof. From the generating function in (1), it is ready that

1

(1− t)r+1
= et

∞∑
n=0

dn,r
tn

n!
.

Using the binomial theorem and applying the Cauchy product, we have

∞∑
n=0

(
−r − 1

n

)
(−t)n =

( ∞∑
n=0

tn

n!

) ∞∑
n=0

dn,r
tn

n!
=

∞∑
n=0

[
n∑

k=0

dn−k,r

k!(n− k)!

]
tn. (6)

Comparing the coe�cients of tn on both sides of (6) and using the identity(
x

k

)
= (−1)k

(
−x+ k − 1

k

)
complete the proof.

Remark 1. For r = 0, Theorem 1 coincides with the second equality in [26, Theorem 2].

Theorem 2. Generalized derangement numbers dn,r satisfy

dn,r+1 = dn,r + ndn−1,r+1. (7)

Proof. From the equation (1), we have

∞∑
n=0

(dn,r+1 − dn,r)
tn

n!
=

e−t

(1− t)r+2
− e−t

(1− t)r+1
= t

e−t

(1− t)r+2
=

∞∑
n=0

dn,r+1
tn+1

n!
=

∞∑
n=0

ndn−1,r+1
tn

n!
.

Equating the coe�cients tn

n! gives the desired result.

Theorem 3. The generalized derangement numbers dn,r satisfy the recurrence relations

dn+1,r = rdn,r+1 + ndn−1,r+1 (8)

and

dn+1,r = (r + 1)dn,r+1 − dn,r. (9)

Proof. From the generating function in (1), we acquire

d

d t

[
e−t

(1− t)r+1

]
=

∞∑
n=0

dn+1,r
tn

n!
. (10)

Di�erentiating on both sides of the equation (1) with respect to t results in

d

d t

[
e−t

(1− t)r+1

]
= (r + t)

e−t

(1− t)r+2
= (r + t)

∞∑
n=0

dn,r+1
tn

n!
= r

∞∑
n=0

dn,r+1
tn

n!
+

∞∑
n=0

ndn−1,r+1
tn

n!
. (11)

Combining (10) and (11) lead to the equation (8).
If subtracting (7) from (8), we obtain the relation (9) immediately.

Theorem 4. Let n, r ∈ N. Then
n∑

k=0

(−1)n−k

(n− k)!
Hk,r+1(α) =

n∑
k=0

dn−k,r−1

(n− k)!
Hk(α).
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Proof. From the generating function in (3), one can write

∞∑
n=0

Hn,r+1(α)t
n =

− ln
(
1− t

α

)
(1− t)r+1

=
− ln

(
1− t

α

)
1− t

e−t

(1− t)r
1

e−t
,

from which it is easy to verify that

∞∑
n=0

Hn,r+1(α)t
n

∞∑
n=0

(−t)n

n!
=

∞∑
n=1

Hn(α)t
n

∞∑
n=0

dn,r−1
tn

n!
.

Applying the Cauchy product and equating the coe�cients of tn yield the desired formula.

Theorem 5. Let n, r ∈ N. Then
n∑

k=0

k!H(k, r, α)dn−k,r−1 = (−1)n−r−1 (r + 1)!

αn

n∑
k=0

(−α)ks(n− k, r + 1)dk,r.

Proof. Consider the equality[
− ln

(
1− t

α

)]r+1

1− t

e−t

(1− t)r
=

[
− ln

(
1− t

α

)]r+1 e−t

(1− t)r+1
.

Utilizing the generating functions in (1), (2), and (4), we �nd

∞∑
n=0

H(n, r, α)tn
∞∑
n=0

dn,r−1
tn

n!
=

∞∑
n=0

(−1)n−r−1(r + 1)!s(n, r + 1)

αn

tn

n!

∞∑
n=0

dn,r
tn

n!
,

from which, we have

∞∑
n=0

[
n∑

k=0

k!H(k, r, α)dn−k,r−1

]
tn

n!
=

∞∑
n=0

[
n∑

k=0

dk,r
(−1)n−k−r−1(r + 1)!s(n− k, r + 1)

αn−k

]
tn

n!
.

Accordingly the desired relation follows immediately.
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