A study of bi-convex classes in Leaf-like domains using quantum calculus through subordination


Abstract views: 12 / PDF downloads: 7

Authors

  • Abdullah Alsoboh Department of Basic and Applied Sciences, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Sultanate of Oman.
  • Ala Amourah Mathematics Education Program, Faculty of Education and Arts, Sohar University, Sohar Oman; Jadara University Research Center, Jadara University, Jordan. https://orcid.org/0000-0001-9287-7704
  • Jamal Salah Department of Basic and Applied Sciences, College of Applied and Health Sciences, A’Sharqiyah University, Ibra, Sultanate of Oman. https://orcid.org/0000-0003-0211-3677

Abstract

This research explores properties of a bi-convex class of functions that are associated with a leaf-shaped region by utilizes the subordination principle and $\mathrm{q}$-calculus. The study also analyzes limitations on coefficients, with a particular emphasis on \(|\varrho_{2}|\) and \(|\varrho_{3}|\). Furthermore, it evaluates Fekete Szeg\"{o} inequalities for functions within the bi-convex class. The findings are supported by figures, examples, and references to relevant studies.

References

Ahuja O., Bohra N., Cetinkaya A., Kumar S. Univalent functions associated with the symmetric points and cardioid-shaped domain involving (p,q)-calculus. Kyungpook Math. J. 2021, 61(1), 75–98.

Agarwal R. P. Certain fractional q-integrals and q-derivatives. Proc. Cambridge Philos. 1969, 66, 365–370.

Alsoboh A., Amourah A., Darus M., Rudder C. A. Investigating new subclasses of bi-univalent functions associated with q-Pascal distribution series using the subordination principle. Symmetry 2023, 15, 1109. https://doi.org/10.3390/sym15051109

Alsoboh A., Çağlar M., Buyankara M. Fekete–Szegö inequality for a subclass of bi-univalent functions linked to q-Ultraspherical polynomials. Contemporary Mathematics 2024, 2366–2380.

Amourah A., Alsoboh A., Salah J., Al Kalbani K. Bounds on initial coefficients for bi-univalent functions linked to q-analog of Le Roy-type Mittag-Leffler function. WSEAS Transactions on Mathematics 2024, 23, 714–722.

Alsoboh A., Amourah A., Sakar F. M., Ogilat O., Gharib G. M., Zomot N. Coefficient estimation utilizing the Faber polynomial for a subfamily of bi-Univalent functions. Axioms 2023, 12, 512. https://doi.org/10.3390/axioms12060512

Alsoboh A., Oros G. I. A class of bi-univalent functions in a Leaf-like domain defined through subordination via q-Calculus. Mathematics 2024, 12, 1594. https://doi.org/10.3390/math12101594

Alsoboh A., Tayyah A. S., Amourah A., Al-Maqbali A. A., Al Mashraf K., Sasa T. Hankel determinant estimates for bi-Bazilevič-type functions involving q-Fibonacci numbers. European Journal of Pure and Applied Mathematics 2025, 18(3), 6698–6698.

Ahmed M., Alsoboh A., Amourah A., Salah J. On the fractional q-differintegral operator for subclasses of bi-univalent functions subordinate to q-ultraspherical polynomials. European Journal of Pure and Applied Mathematics 2025, 18(3), Article ID: 6586.

Alsoboh A., Amourah A., Darus M., Rudder C. A. Studying the harmonic functions associated with quantum calculus. Mathematics 2023, 11(10), 2220.

Alsoboh A., Darus M. New subclass of analytic functions defined by q-differential operator with respect to k-symmetric points. International Journal of Mathematics and Computer Science 2019, 14, 761–773.

Alsoboh A., Amourah A., Alnajar O., Ahmed M., Seoudy T. M. Exploring q-Fibonacci Numbers in Geometric Function Theory: Univalence and Shell-like Starlike Curves. Mathematics 2025, 13(8), 1294. https://doi.org/10.3390/math13081294

Alsoboh A., Darus M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator involving q-Ruscheweyh operator. Journal of Function Spaces 2020, 2020(1), 8459405. https://doi.org/10.1155/2020/8459405

Amourah A., Alsoboh A., Breaz D., El-Deeb S. M. A bi-starlike class in a Leaf-like domain defined through subordination via q-calculus. Mathematics 2024, 12, 1735. https://doi.org/10.3390/math12111735

Al-Hawary T., Amourah A., Alsoboh A., Ogilat O., Harny I., Darus M. Applications of q-Ultraspherical polynomials to bi-univalent functions defined by q-Saigo’s fractional integral operators. AIMS Mathematics 2024, 9(7), 17063–17075.

Al-Hawary T., Amourah A., Alsoboh A., Freihat A. M., Ogilat O., Harny I., Darus M. Subclasses of Yamakawa-type bi-starlike functions subordinate to Gegenbauer polynomials associated with quantum calculus. Results in Nonlinear Analysis 2024, 7(4), 75–83.

Alsoboh A., Amourah A., Alnajar O., Ahmed M., Seoudy T. M. Exploring q-Fibonacci numbers in geometric function theory: Univalence and shell-like starlike curves. Mathematics 2025, 13, 1294. https://doi.org/10.3390/math13081294

Andrei L., Caus V. A. Subordinations results on a q-derivative differential operator. Mathematics 2024, 12(2), 208.

Al-Salam W. A. Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 1966, 15(2), 135–140.

Duren P. L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York,NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.

Hadi S. H., Shaba T. G., Madhi Z. S., Darus M., Lupaş A. A., Tchier F. Boundary values of Hankel and Toeplitz determinants for q-convex functions. MethodsX 2024, 13, Article 102842.

Hadi S. H., Darus M., Alamri B., Altınkaya Ş., Alatawi A. On classes of z-uniformly q-analogue of analytic functions with some subordination results. Applied Mathematics in Science and Engineering 2024, 32(1), Article 2312803.

Fekete M., Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 1, 85–89.

Gasper G., Rahman M. Basic Hypergeometric Series, 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, MA, USA, 2004; Volume 96.

Khan M. F., AbaOud M. New applications of fractional q-calculus operator for a new subclass of q-Starlike functions related with the Cardioid domain. Fractal Fract. 2024, 8(1), 71.

Ma W., Minda D. A unified treatment of some special classes of univalent functions, in: Proc. Conf. Comp. Anal. Tianjin China, 1992, 157–169.

Miller S. S. Differential inequalities and Carathéodory functions. Bull. Am. Math. Soc. 1975, 81, 79–81.

Khan B., Srivastava H. M., Khan N., Darus M., Tahir M., Ahmad Q. Z. Coefficient estimates for a subclass of analytic functions associated with a certain Leaf-like Domain. Mathematics 2020, 8, 1334. https://doi.org/10.3390/math8081334

Piejko R. K., Sokól J. On the convolution and subordination of convex functions. Applied Mathematics Letters. 2012, 25(3), 448–453.

Priya M. H., Sharma R. B. On a class of bounded turning functions subordinate to a leaf-like domain. J. Phys. Conf. Ser. 2018, 1000, 012056.

Seoudy T. M., Aouf M. K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J.Math. Inequal. 2016, 10.1, 135–145.

Singh G., Kaur C. Starlike and convex functions subordinate to Leaf-like domain. Turkish Journal of Computer and Mathematics Education. 2021, 12(14), 6098–6102.

Sokół J., Stankiewicz J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat, 1996, 19, 101–105.

Srivastava H. M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44(1), 327–344.

Srivastava H. M., Mostafa A. O., Aouf M. K., Zayed H. M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Mathematical Notes. 2019, 20.1, 489–509.

Uçar H. E. Ö. Coefficient inequality for q-starlike functions. App. Math. Comput. 2016, 276, 122–126.

Shakir Q. A., Tayyah A. S., Breaz D., Cotîrlă L. I., Rapeanu E., Sakar F. M. Upper bounds of the third Hankel determinant for bi-univalent functions in crescent-shaped domains. Symmetry 2024, 16(10), 1281.

Tayyah A. S., Atshan W. G. Starlikeness and bi-starlikeness associated with a new Carathéodory function. Journal of Mathematical Sciences 2025, 1–25.

Tayyah A. S., Atshan W. G., Oros G. I. Third-order differential subordination results for meromorphic functions associated with the inverse of the Legendre Chi function via the Mittag-Leffler identity. Mathematics 2025, 13(13), 2089.

Downloads

Published

2026-01-06

How to Cite

Alsoboh, A., Ala Amourah, & Jamal Salah. (2026). A study of bi-convex classes in Leaf-like domains using quantum calculus through subordination. Results in Nonlinear Analysis, 8(3), 210–221. Retrieved from https://www.nonlinear-analysis.com/index.php/pub/article/view/636