Some Novel Versions of Fractional Hermite–Hadamard-Mercer Type Inequalities with Matrix Applications


Keywords:
Generalized fractional integral operator, H–H-Mercer inequality, Inter- val-valued function, Convexity, Matrix applications.Abstract
In this study, we explore several fractional Hermite–Hadamard (H–H)-Mercer inequalities for interval-valued functions through the use of a generalized fractional integral operator (GFIO). Furthermore, we examine new variations of the H–H-Mercer inequality in relation to GFIO. Various examples are included to support our assertions. The results could offer new insights into a broad spectrum of integral inequalities for fractional fuzzy systems within the framework of interval analysis, along with the optimization issues they raise. Moreover, some applications on matrices are illustrated.
References
S. Boyd, C. Crusius, A. Hansson, New advances in convex optimization and control applications, IFAC Proceedings., 30(9) (1997) 365–393.
B. S. Mordukhovich, N. MN, An easy path to convex analysis and applications, Synthesis Lectures Mathematics and Statistics, 6 (2013) 1–218.
W. Zhang, X. Lu, X. Li, Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection, IEEE Trans Geosci Remote Sensing, 5748 2009 10–22.
Z. Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing, IEEE Journal on Selected Areas in Communications, 24(8) (2006).
A. Föllmer, A. Schied, Convex measures of risk and trading constraints, Finance and stochastics, 6 (2002), 429–447.
V. Chandrasekarana, M. I. Jordan, Computational and statistical tradeoffs via convex relaxation, Proceedings of the National Academy of Sciences, 11 (2013).
F. Cingano, Trends in income inequality and its impact on economic growth, OECD Social, Employment and Migration Working papers, No. 163, OECD Publishing, (2014).
M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with applications to engineering, Springer International Publishing, Imprint, Springer, (2014).
S.K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (h,m)-Convex Functions, Symmetry, 2021, 13, 1686.
H. A. Hammad, H. Aydi, D. A. Kattan, Solving Coupled Impulsive Fractional Differential Equations With Caputo-Hadamard Derivatives in Phase Spaces, Int. J. Anal. Appl. (2023) 21:0.
H. A. Hammad, H. Aydi, D. A. Kattan, Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints, Phys. Scr., 99 (2024) 025207.
J. Nasir, S. Mansour, S. Qaisar, H. Aydi, Some variants on Mercer’s Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel, AIMS Mathematics, 8(5) (2023) 10001–10020.
A. Al Rawashdeh, N. Mehmood, M. Rashid, Coincidence and common fixed points of integral contractions for L-fuzzy maps with applications in fuzzy functional inclusions, Journal of Intelligent & Fuzzy Systems, 35 (2) (2018) 2173–2187.
R. Pandey, R. Pant, A. Al Rawashdeh, Fixed point results for a class of monotone nonexpansive type mappings in hyperbolic spaces, Journal of Function Spaces, Volume 2018, Article ID 5850181, 11 pages.
R. P. Bapat, Applications of inequality in information theory to matrices, Linear Algebra and its Applications, 78, (1986), 78, 107–117.
C. J. Thompson, (h,m)- preinvex with applications in statistical mechanics, Journal of Mathematical Physics, 6 (1965) 1812.
H. Budak, T. Tunç and M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proceedings of the American Mathematical Society, 148(2) (2020) 705–718.
T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos, Solitons & Fractals., 163 (2022) 112602.
S. I. Butt, D. Pečarić, J. Pečarić, Several Jensen-Gruss inequalities with applications in information theory, Ukrains’ kyi Matematychnyi Zhurnal. 74 (12) (2023) 1654–1672.
N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen’s inequality by Lidstone’s polynomial with applications in Information Theory, Journal of Mathematical Inequalities 14 (1) (2019) 249–271.
M. Z. Sarikaya, E. Set, H. Yaldiz. N. Aşak, Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, 57 (2013) 2403–2407.
P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators. Mathematical methods in the applied sciences, 40 (2017) 3882–3891.
S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Advances in Difference Equations, 2020 635 (2020).
Q. Kang, S. I. Butt, W. Nazeer, M. Nadeem, J. Nasir, H. Yang, New Variants of Hermite-Jensen-Mercer Inequalities Via Riemann-Liouville Fractional Integral Operators, Journal of Mathematics, 2020 (2020).
S. I. Butt, M. Umar, K. A. Khan, A. Kashuri and H. Emadifar, Fractional Hermite–Jense–Mercer integral inequalities with respect to another function and application. Complexity, 2021(1) 9260828 (2021).
J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Jensen, J. L. W. V. (1906). Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta mathematica, 30(1) 30 (1905) 175–193.
C. P. Niculescu, L. E. Persson, Convex functions and their applications, Springer: New York, USA, (2006).
J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann, Journal de mathématiques pures et appliquées, 58 (1893) 171–215.
S. I. Butt, J. Nasir, S. Qaisar, K. M. Abualnaja, k-Fractional Variants of Hermite-Mercer-Type Inequalities via s-convexity with Applications, Journal of Function Spaces, Volume 2021, Article ID 5566360, 15 pages.
S. Khan, M. A. Khan, S. I. Butt, Y. M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Advances in Difference Equations, 2020 (2020) 2020:333.
A. McD. Mercer, A Variant of Jensens Inequality, Journal of Inequalities in Pure and Applied Mathematics, 4(4) (2003) Article 73.
A. Matkovic, J. Pečarić, A variant of Jensens inequality of Mercers type for operators with applications, Linear algebra and its applications, 418 (2006) 551–564.
M. Niezgoda, A generalization of Mercer’s result on convex functions, Nonlinear Analysis: Theory, Methods and Applications, 71 (2009) 277.
M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra and its Applications, 456 (2014) 82–87.
M. Kian, M. Moslehian, Refinements of the operator Jensen-Mercer inequality, The Electronic Journal of Linear Algebra, 26 (2013) 742–753.
J. Zhao, S. I. Butt, J. Nasir, Z. Wang, I. Tlili, Hermite-Jensen-Mercer type inequalities for Caputo fractional derivatives, Journal of Function Spaces, (2020).
H. R. Moradi, S. Furuichi, Improvement and generalization of some Jensen-Mercer-type inequalities, Journal of Mathematical Inequalities, Volume 14, Number 2 (2020) 377–383.
M. Niezgoda, A generalization of Mercer’s result on convex functions, Nonlinear Analysis, Theory, Methods and Applications, 71 (7) (2009) 2771–2779.
J. Nasir, S. Qaisar, S. I. Butt, H. Aydi, M. De la Sen, Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications, AIMS Math., 7 (2022) 3418–3439.
F. Jarad, E. Uayurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Advanced Differential Equations, 2017(1) (2017) 1–16.
Y. Chalco-Cano, A. Flores-Franulic , H. Roman-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Computational and Applied Mathematics, 31(3) (2021) 457–472.
Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Computer, 19(11) (2015) 3293–3300.
H. Budak, T. Tunc , M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proceedings of the American Mathematical Society, 148 (2) (2019) 705–718.
T. M. Costa, Jensen’s inequality type integral for fuzzy interval-valued functions, Fuzzy Sets and Systems, 2017(327) (2017) 31–47.
T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, Information Sciences, 2017 (420) (2017) 110–125.
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, Journal of Inequalities and Applications, 2018(1) (2018) 1–14.
S. Markov, On the algebraic properties of convex bodies and some applications, Journal of convex analysis, 7(1) (2000) 129–166.
V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, 2015(265) (2015) 63–85.
A. Dinghas, Zum Minkowskischen Integralbegriff abgeschlossener Mengen (German), Mathematische Zeitschrift, 66 (1956) 173–188.
R. E. Moore, Interval analysis, Prentice-Hall, Hoboken, ABD: Englewood Cliffs, (1966).
A. K. Bhurjee, G. Panda, Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions, Opsearch, 52 (2015) 156–167.
J. Zhang, S. Liu, L. Li, Q. Feng, The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optimization Letters, 8 (2014) 607-631.
D. Zhao, T. An, G. Ye, W. Liu, Chebyshev type inequalities for interval-valued functions, Fuzzy Sets System, 396 (2020) 82–101.
H. Budak, T. Tunc, M. Sarikaya, Fractional Hermite-Hadamard type inequalities for interval-valued functions, Proceedings of the American Mathematical Society, 148 (2020) 705–718.
N. Sharma, S. K. Singh, S. K. Mishra, A. Hamdi, Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals, Journal of Inequalities and Applications, 98, (2021).
R. E. Moore, R. B. Kearfott, M. J.Cloud, Introduction to interval analysis, Siam, Thailand: Society for Industrial and Applied Mathematics, (2009).
D. Zhao, G. Ye, W. Liu, D. F. Torres, Some inequalities for interval-valued functions on time scales, Soft Computer, 23 (15) (2019) 6005–6015.
E. Sadowska, Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results in Math., 32(3) (1997) 332–337.
W. W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Revue d’analyse numérique et de théorie de l’approximation, 22(1) (1993) 39–51.
D. Zhao, T. An, G. Ye, W. Liu, New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, Journal of Inequalities and Applications, 2018(1) (2018) 1-14.
R. Osuna-Gómez, M. D. Jimeénez-Gamero, Y. Chalco-Cano, M. A. Rojas-Medar, Hadamard and Jensen inequalities for s-convex fuzzy processes, In Soft Methodology and Random Information Systems, 2004 (2004) 645–652.
T. Sitthiwirattham, I. B. Sial, S. Mei, M . A. Ali, H. Budak, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, Filomat, 2023 37 (17) (2023) 5553–5565.
M. E. Özdemir, S. I. Butt, B. Bayraktar, J. Nasir, Several integral inequalities for ( , α s m, )-convex functions, AIMS Mathematics, 5 (4) (2020) 3906–3921.
A. Gözzanar, Some Hermite-Hadamard type inequalities for convex functions via new fractional conformable integrals and related inequalities, In AIP Conference Proceedings (Vol. 1991, No. 1). AIP Publishing, (2018, July).
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Mathematical Notes, 17(2) (2016) 1049–1059.
M. Sababheh, Convex functions and means of matrices, (2016) arXiv preprint arXiv:1606.08099.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Results in Nonlinear Analysis

This work is licensed under a Creative Commons Attribution 4.0 International License.