On Huang-Samet multivalued p-contractions


Abstract
This paper is devoted to prove the existence of fixed points for some classes of multivalued maps in the context of metric spaces. The obtained results generalize the recent theorems of Huang and Samet. Some examples are presented making effective our results.
References
W. Shatanawi, T.A.M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Mathematics, 2023, 8(4), 9314–9330.
A.Z. Rezazgui, A.A. Tallafha, W. Shatanawi, Common fixed point results via A - -contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Mathematics, 2023, 8(3), 7225–7241.
M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Mathematics, 2023, 8(2), 4407–4441.
P.R. Patle, D.K. Patel, H. Aydi, D. Gopal, N. Mlaiki, Nadler and Kannan Type set valued mappings in M-metric spaces and an application, Mathematics 7 (4) (2019), 373.
S.B. Nadler, Multivalued contraction mappings, Pac. J. Math. 30 (1969), 475–488.
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math. 3 (1922), 133–181.
M.U. Ali, T. Kamran, Multivalued F-Contractions and Related Fixed Point Theorems with an Application, Filomat, 30 (14) (2016), 3779–3793.
S. Termkaew, P. Chaipunya, D. Gopal, P. Kumam, A contribution to best proximity point theory and an application to partial differential equation, Optimization, 73 (7) (2023), 2187–2219.
G. Minak, I. Altun, Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Inequal. Appl., (2013) 2013:493.
M. Mudhesh, M. Arshad, A. Hussain, A.H. Albargi, E. Ameer, The solvability of fourth-order differential equations under almost Hardy-Rogers ( , )-type multivalued contractions in Mς -metric space, International Journal of Mathematics and Mathematical Sciences, Volume 2024, Article ID 6620429, 14 pages.
M. Mudhesh, A. Hussain, M. Arshad, H. Alsulami, A contemporary approach of integral Khan-Type multivalued contractions with generalized dynamic process and an application, Mathematics, 11(20) (2023), 4318.
M. U. Ali, Q. Kiran, N. Shahzad, Fixed point theorems for multivalued mappings involving α -function, Abstr. Appl. Anal., (2014) Article ID 409467.
M. Berinde, V. Berinde, On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007) 772–782.
H. Huang, B. Samet, Two fixed point theorems in CMSs, AIMS Mathematics, 9(11) (2024), 9(11): 30612–30637.
S. S. Dragomir, Operator inequalities of the Jensen, Čebysěv and Grüss type, Springer Briefs in Mathematics, Springer, New York., 2012 (2012).
M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, New York, (1992).
S.G. Matthews, Partial metric spaces, Annals of the New York Academy of Sciences-Paper Edition., 728 (1994), 183–197.
A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen., 57 (2000), 31–37.
I.A. Bakhtin, Contracting mapping principle in an almost metric space (Russian), Funkts. Anal., 30 (1989), 26–37.
Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J . Nonlinear Convex Anal., 7 (2006), 289–297.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Results in Nonlinear Analysis

This work is licensed under a Creative Commons Attribution 4.0 International License.